相關(guān)習(xí)題
 0  236106  236114  236120  236124  236130  236132  236136  236142  236144  236150  236156  236160  236162  236166  236172  236174  236180  236184  236186  236190  236192  236196  236198  236200  236201  236202  236204  236205  236206  236208  236210  236214  236216  236220  236222  236226  236232  236234  236240  236244  236246  236250  236256  236262  236264  236270  236274  236276  236282  236286  236292  236300  266669 

科目: 來源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1中,D是AB的中點(diǎn).
(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=2,$AB=2\sqrt{2}$,求異面直線AB1與CD所成角的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知集合A={x|x2+2x-3>0},集合B是不等式x2+mx+1>0對(duì)于x∈R恒成立的m構(gòu)成的集合.
(1)求集合A與B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.下列各組函數(shù)表示相同函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$     g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=4sinx(cosx-sinx)+3
(Ⅰ)當(dāng)x∈(0,π)時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[0,θ]上的值域?yàn)閇0,2$\sqrt{2}$+1],求cos2θ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=lg$\frac{x+1}{x-1}$.
(Ⅰ)求函數(shù)f(x)的定義域,并證明其在定義域上是奇函數(shù);
(Ⅱ)對(duì)于x∈[2,6],f(x)>lg$\frac{m}{(x-1)(7-x)}$恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象沿x軸方向向右平移$\frac{π}{6}$個(gè)單位長度,再把橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈[-$\frac{π}{12}$,$\frac{π}{3}$]時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x-x2,若存在實(shí)數(shù)a,b,使f(x)在[a,b]上的值域?yàn)閇$\frac{1}$,$\frac{1}{a}$],則ab=$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知tan(π-x)=-2,則4sin2x-3sinxcosx-5cos2x=1.

查看答案和解析>>

科目: 來源: 題型:填空題

8.如果冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,8),則f(3)=27.設(shè)g(x)=f(x)+x-m,若函數(shù)g(x)在(2,3)上有零點(diǎn),則實(shí)數(shù)m的取值范圍是10<m<30.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知sinα=$\frac{1}{2}$+cosα,且α∈(0,$\frac{π}{2}$),則sin2α=$\frac{3}{4}$,cos2α=-$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案