相關(guān)習(xí)題
 0  236148  236156  236162  236166  236172  236174  236178  236184  236186  236192  236198  236202  236204  236208  236214  236216  236222  236226  236228  236232  236234  236238  236240  236242  236243  236244  236246  236247  236248  236250  236252  236256  236258  236262  236264  236268  236274  236276  236282  236286  236288  236292  236298  236304  236306  236312  236316  236318  236324  236328  236334  236342  266669 

科目: 來源: 題型:解答題

10.關(guān)于x的不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$(其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時(shí),上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.若函數(shù)f(x)=lnx+ax2-2在區(qū)間($\frac{1}{2}$,2)內(nèi)存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-2]B.(-$\frac{1}{8}$,+∞)C.(-2,-$\frac{1}{8}$)D.(-2,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,點(diǎn)F2到直線x+$\sqrt{3}$y=0的距離為$\frac{1}{2}$,若點(diǎn)P在橢圓E上,△F1PF2的周長(zhǎng)為6.
(1)求橢圓E的方程;
(2)若過F1的直線l與橢圓E交于不同的兩點(diǎn)M,N,求△F2MN的內(nèi)切圓的半徑的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.若f(x)=5cosx,則f′($\frac{π}{2}$)=-5.

查看答案和解析>>

科目: 來源: 題型:填空題

6.橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦點(diǎn)為F1、F2,P為橢圓上的一點(diǎn),$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則$|{\overrightarrow{P{F_1}}}|•|{\overrightarrow{P{F_2}}}|$=8.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知兩個(gè)單位向量$\overrightarrow i$,$\overrightarrow j$互相垂直,且向量$\overrightarrow k=2\overrightarrow i-4\overrightarrow j$,則$|\overrightarrow k+\overrightarrow i|$=5.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)是周期為2的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f(-$\frac{5}{2}$)=( 。
A.-$\frac{35}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知直線l1:x+my+6=0和直線l2:(m-2)x+3y+2m=0,試分別求實(shí)數(shù)m的值.
(1)l1⊥l2
(2)l1∥l2;
(3)l1與l2重合;
(4)相交.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知集合A={x∈Z|-1≤x≤2},B={y|y=2x},則A∩B=(  )
A.B.[0,2]C.(0,2]D.{1,2}

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知直線y=-x+1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A、B兩點(diǎn).且OA⊥OB(其中O為坐標(biāo)原點(diǎn)).
(1)若橢圓的離心率為$\frac{\sqrt{3}}{3}$,求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:不論a,b如何變化,橢圓恒過定點(diǎn)P;
(3)若直線l:y=ax+m過(2)中的定點(diǎn)P,且橢圓的離心率e∈[$\sqrt{\frac{6}{7}}$,$\sqrt{\frac{16}{17}}$],求原點(diǎn)到直線l距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案