相關(guān)習(xí)題
 0  236165  236173  236179  236183  236189  236191  236195  236201  236203  236209  236215  236219  236221  236225  236231  236233  236239  236243  236245  236249  236251  236255  236257  236259  236260  236261  236263  236264  236265  236267  236269  236273  236275  236279  236281  236285  236291  236293  236299  236303  236305  236309  236315  236321  236323  236329  236333  236335  236341  236345  236351  236359  266669 

科目: 來源: 題型:選擇題

20.已知y2=16x,A(1,2),P為拋物線上的點(diǎn),F(xiàn)為拋物線焦點(diǎn),則|PF|+|PA|的最小值為( 。
A.1B.4C.5D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$內(nèi)一點(diǎn)P(1,1),則以P為中點(diǎn)的弦方程為( 。
A.x+2y-3=0B.x+4y-5=0C.4x+y-5=0D.x-2y=0

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}$=1的兩個焦點(diǎn),p為雙曲線上一點(diǎn)且∠F1PF2=60°,則${S_{△P{F_1}{F_2}}}$=( 。
A.$16\sqrt{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知命題:?x∈R,則2x2+2x+$\frac{1}{2}$<0的否定是( 。
A.?x∈R,則2x2+2x+$\frac{1}{2}$≥0B.?x0∈R,則2x02+2x0+$\frac{1}{2}$≥0
C.?x0∈R,則2x02+2x0+$\frac{1}{2}$<0D.?x∈R,則2x2+2x+$\frac{1}{2}$>0

查看答案和解析>>

科目: 來源: 題型:選擇題

16.命題:“若p則q”的逆命題是( 。
A.若?p則?qB.若?q則?pC.若q則pD.若p則q

查看答案和解析>>

科目: 來源: 題型:解答題

15.若F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),p是該橢圓上的一個動點(diǎn),且$|{P{F_1}}|+|{PF_2^{\;}}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$.
(1)求出這個橢圓方程;
(2)是否存在過定點(diǎn)N(0,2)的直線l與橢圓交于不同的兩點(diǎn)A,B,使$\overrightarrow{OA}⊥\overrightarrow{OB}$(其中O為坐標(biāo)原點(diǎn))?若存在,求出直線l的斜率k;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,∠ABC=60°,PA=AB=BC,AD=$\frac{2\sqrt{3}}{3}$AB,E是PC的中點(diǎn).
證明:PD⊥平面ABE.

查看答案和解析>>

科目: 來源: 題型:解答題

13.求以雙曲線y2-3x2=12的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.平面內(nèi)有兩定點(diǎn)A、B及動點(diǎn)P,如果|PA|+|PB|=2a(a為常數(shù)),那么P點(diǎn)的軌跡是( 。
A.橢圓B.雙曲線C.拋物線D.不能確定

查看答案和解析>>

科目: 來源: 題型:選擇題

11.雙曲線$\frac{x^2}{{{m^2}+12}}-\frac{y^2}{{4-{m^2}}}=1$的焦距是(  )
A.8B.4C.$2\sqrt{2}$D.與m有關(guān)

查看答案和解析>>

同步練習(xí)冊答案