相關(guān)習(xí)題
 0  236932  236940  236946  236950  236956  236958  236962  236968  236970  236976  236982  236986  236988  236992  236998  237000  237006  237010  237012  237016  237018  237022  237024  237026  237027  237028  237030  237031  237032  237034  237036  237040  237042  237046  237048  237052  237058  237060  237066  237070  237072  237076  237082  237088  237090  237096  237100  237102  237108  237112  237118  237126  266669 

科目: 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,2Sn=3an-2n(n∈N+).
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an+2n+1,求證:$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$<$\frac{1}{2}-\frac{1}{{2}^{n+1}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=4sin(x-$\frac{π}{3}$)cosx+$\sqrt{3}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)g(x)=f(x)-m所在[0,$\frac{π}{2}$]勻上有兩個(gè)不同的零點(diǎn)x1,x2,求實(shí)數(shù)m的取值范圍,并計(jì)算tan(x1+x2)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<3)的左右焦點(diǎn)分別為E,F(xiàn),過(guò)點(diǎn)F作直線交橢圓C于A,B兩點(diǎn),若$\overrightarrow{AF}=2\overrightarrow{FB}$且$\overrightarrow{AE}•\overrightarrow{AB}=0$
(1)求橢圓C的方程;
(2)已知點(diǎn)O為原點(diǎn),圓D:(x-3)2+y2=r2(r>0)與橢圓C交于M,N兩點(diǎn),點(diǎn)P為橢圓C上一動(dòng)點(diǎn),若直線PM,PN與x軸分別交于點(diǎn)R,S,求證:|OR|•|OS|為常數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.若一個(gè)空間幾何體的三視圖如圖所示,且已知該幾何體的體積為$\frac{\sqrt{3}}{6}π$,則其表面積為( 。
A.$\frac{3}{2}π+\sqrt{3}$B.$\frac{3}{2}π$C.$\frac{3}{4}π+2\sqrt{3}$D.$\frac{3}{4}π+\sqrt{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.設(shè)數(shù)列{an}的各項(xiàng)均為不等的正整數(shù),其前n項(xiàng)和為Sn,我們成滿足條件“對(duì)任意的m,n∈N*,均有(n-m)Sm+n=(m+n)(Sn-Sm)”的數(shù)列{an}為“好”數(shù)列.
(1)試判斷數(shù)列{an},{bn}是否為“好”數(shù)列,其中${a_n}=2n-1,{b_n}={2^{n-1}},n∈{N^*}$,并給出證明.
(2)已知數(shù)列{cn}為“好”數(shù)列.
①c2016=2017,求數(shù)列的通項(xiàng)公式;
②若c1=p,且對(duì)任意的給定正整數(shù)p,s(s>1),有c1,cs,ct成等比數(shù)列,求證:t≥s2

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.某校園內(nèi)有一塊三角形綠地AEF(如圖1),其中AE=20m,AF=10m,∠EAF=$\frac{2π}{3}$,綠地內(nèi)種植有一呈扇形AMN的花卉景觀,扇形AMN的兩邊分別落在AE和AF上,圓弧MN與EF相切于點(diǎn)P.
(1)求扇形花卉景觀的面積;
(2)學(xué)校計(jì)劃2017年年整治校園環(huán)境,為美觀起見(jiàn),設(shè)計(jì)在原有綠地基礎(chǔ)上擴(kuò)建成平行四邊形ABCD(如圖2),其中∠BAD=$\frac{2π}{3}$,并種植兩塊面積相同的扇形花卉景觀,兩扇形的邊都分別落在平行四邊形ABCD的邊上,圓弧都與BD相切,若扇形的半徑為8m,求平行四邊形ABCD綠地占地面積的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=|x2-2x-3|,g(x)=x+a.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;(只需寫(xiě)出結(jié)論即可)
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),若h(x)在區(qū)間(-1,3)上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若存在實(shí)數(shù)m∈[2,5],使得對(duì)于任意的x1∈[0,2],x2∈[-2,-1],都有f(x1)-m≥g(2${\;}^{{x}_{2}}$)-5成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知A為銳角△ABC的內(nèi)角,且 sinA-2cosA=a(a∈R).
(Ⅰ)若a=-1,求tanA的值;
(Ⅱ)若a<0,且函數(shù)f(x)=(sinA)•x2-(2cosA)•x+1在區(qū)間[1,2]上是增函數(shù),求sin2A-sinA•cosA的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知集合A={x|x2-2x-3<0},B={x|2a-1<x<a+1},a∈R.
(Ⅰ)若B⊆A,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)函數(shù)$f(x)=4sin(2x+\frac{π}{3})+1$,若實(shí)數(shù)x0滿足f(x0)∈A,求實(shí)數(shù)x0取值的集合.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$.
(Ⅰ)判斷f(x)的奇偶性,并加以證明;
(Ⅱ)求方程$f(x)=\frac{1}{2}$的實(shí)數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案