相關習題
 0  237280  237288  237294  237298  237304  237306  237310  237316  237318  237324  237330  237334  237336  237340  237346  237348  237354  237358  237360  237364  237366  237370  237372  237374  237375  237376  237378  237379  237380  237382  237384  237388  237390  237394  237396  237400  237406  237408  237414  237418  237420  237424  237430  237436  237438  237444  237448  237450  237456  237460  237466  237474  266669 

科目: 來源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,且a1≥1,a2≤5,a5≥8,設數(shù)列{an}的前n項和為Sn,S15的最大值為M,最小值為m,則M+m=( 。
A.500B.600C.700D.800

查看答案和解析>>

科目: 來源: 題型:選擇題

15.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F,作圓x2+y2=$\frac{{a}^{2}}{4}$的一條切線,切點為E,延長FE與雙曲線的右支交于點P,若E是線段FP的中點,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{10}}{5}$C.$\sqrt{10}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出S=( 。
A.$\frac{4}{9}$B.$\frac{5}{11}$C.$\frac{6}{13}$D.$\frac{36}{55}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知一個樣本為x,1,y,5,若該樣本的平均數(shù)為2,則它的方差的最小值為(  )
A.5B.4C.3D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

12.“a+b=1”是“直線x+y+1=0與圓(x-a)2+(y-b)2=2相切”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知兩條直線m,n和兩個不同平面α,β,滿足α⊥β,α∩β=l,m∥α,n⊥β,則(  )
A.m∥nB.m⊥nC.m∥lD.n⊥l

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,m),$\overrightarrow{c}$=(7,1),若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$•$\overrightarrow{c}$=( 。
A.8B.10C.15D.18

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知集合A={x||x-1|≤2},B={x|x=2n-1,n∈Z},則A∩B=(  )
A.{1,3}B.{0,2}C.{1}D.{-1,1,3}

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知復數(shù)z滿足(1+i)z=1+3i(i是虛數(shù)單位),則z的共軛復數(shù)為( 。
A.1-iB.1+iC.2-iD.2+i

查看答案和解析>>

科目: 來源: 題型:解答題

7.某校開展“翻轉(zhuǎn)合作學習法”教學實驗,經(jīng)過一年的實踐后,對“翻轉(zhuǎn)班”和“對照班”的全部220名學生的數(shù)學學習情況進行測試,按照大于或等于120分為“成績優(yōu)秀”,120分以下為“成績一般”統(tǒng)計,得到如下的2×2列聯(lián)表.
  成績優(yōu)秀 成績一般 合計
 對照班 20 90 110
 翻轉(zhuǎn)班 40 70 110
 合計 60 160 220
(Ⅰ)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認為“成績優(yōu)秀與翻轉(zhuǎn)合作學習法”有關;
(Ⅱ)為了交流學習方法,從這次測試數(shù)學成績優(yōu)秀的學生中,用分層抽樣方法抽出6名學生,再從這6名學生中抽3名出來交流學習方法,求至少抽到一名“對照班”學生交流的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$:
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步練習冊答案