科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓:及其上一點(diǎn).
(1)設(shè)圓與軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于的直線與圓相交于,兩點(diǎn),且,求直線的方程;
(3)設(shè)點(diǎn)滿足:存在圓上的兩點(diǎn)和,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱中, , , 分別為棱的中點(diǎn).
(1)在平面內(nèi)過點(diǎn)作平面交于點(diǎn),并寫出作圖步驟,但不要求證明.
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a為實數(shù),記函數(shù)f(x)=a + + 的最大值為g(a).
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足g(a)=g( )的所有實數(shù)a.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在(﹣1,1)上的函數(shù)f(x)滿足:對任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求證:函數(shù)f(x)是奇函數(shù);
(Ⅱ)如果當(dāng)x∈(﹣1,0]時,有f(x)<0,試判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的判斷;
(Ⅲ)在(Ⅱ)的條件下,若a﹣8x+1>0對滿足不等式f(x﹣ )+f( ﹣2x)<0的任意x恒成立,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】2016年新高一學(xué)生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對新生進(jìn)行了素質(zhì)測查,隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(均低于100分),其相關(guān)數(shù)據(jù)統(tǒng)計如下:
分?jǐn)?shù)段 | 頻數(shù) | 選擇題≥24分 |
5 | 2 | |
10 | 4 | |
15 | 12 | |
10 | 6 | |
5 | 4 | |
5 | 5 |
(1)若全區(qū)高一新生有5000人,試估計成績不低于60分的人數(shù);
(2)根據(jù)表格數(shù)據(jù)試估計全區(qū)新生數(shù)學(xué)的平均成績(同一分?jǐn)?shù)段的數(shù)據(jù)取該區(qū)間的中點(diǎn)值作為代表,如區(qū)間的中點(diǎn)值為75);
(3)從成績在中抽取選擇題得分不低于24分的3名學(xué)生進(jìn)行具體分析,求至少有2名學(xué)生成績在內(nèi)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)在橢圓上,設(shè)分別為左頂點(diǎn)、上頂點(diǎn)、下頂點(diǎn),且下頂點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)如圖所示,過點(diǎn)作斜率為的直線交橢圓于,交軸于點(diǎn),若為中點(diǎn),過作與直線垂直的直線,證明:對于任意的,直線恒過定點(diǎn),并求出此定點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com