相關(guān)習(xí)題
 0  256825  256833  256839  256843  256849  256851  256855  256861  256863  256869  256875  256879  256881  256885  256891  256893  256899  256903  256905  256909  256911  256915  256917  256919  256920  256921  256923  256924  256925  256927  256929  256933  256935  256939  256941  256945  256951  256953  256959  256963  256965  256969  256975  256981  256983  256989  256993  256995  257001  257005  257011  257019  266669 

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點(diǎn).

(1)設(shè)圓軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于的直線與圓相交于,兩點(diǎn),且,求直線的方程;

(3)設(shè)點(diǎn)滿足:存在圓上的兩點(diǎn),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱中, , , 分別為棱的中點(diǎn).

(1)在平面內(nèi)過點(diǎn)平面于點(diǎn),并寫出作圖步驟,但不要求證明.

(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)a為實數(shù),記函數(shù)f(x)=a + + 的最大值為g(a).
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足g(a)=g( )的所有實數(shù)a.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若不存在極值點(diǎn),求的取值范圍;

(2)若,證明: .

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng),時,討論函數(shù)的單調(diào)性;

(2)對于任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在(﹣1,1)上的函數(shù)f(x)滿足:對任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求證:函數(shù)f(x)是奇函數(shù);
(Ⅱ)如果當(dāng)x∈(﹣1,0]時,有f(x)<0,試判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的判斷;
(Ⅲ)在(Ⅱ)的條件下,若a﹣8x+1>0對滿足不等式f(x﹣ )+f( ﹣2x)<0的任意x恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】2016年新高一學(xué)生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對新生進(jìn)行了素質(zhì)測查,隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(均低于100分),其相關(guān)數(shù)據(jù)統(tǒng)計如下:

分?jǐn)?shù)段

頻數(shù)

選擇題24分

5

2

10

4

15

12

10

6

5

4

5

5

(1)若全區(qū)高一新生有5000人,試估計成績不低于60的人數(shù);

(2)根據(jù)表格數(shù)據(jù)試估計全區(qū)新生數(shù)學(xué)的平均成績(同一分?jǐn)?shù)段的數(shù)據(jù)取該區(qū)間的中點(diǎn)值作為代表,如區(qū)間的中點(diǎn)值為75);

(3)從成績在中抽取選擇題得分不低于24分的3名學(xué)生進(jìn)行具體分析,求至少有2學(xué)生成績在內(nèi)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】若某程序框圖如圖所示,當(dāng)輸入50時,則該程序運(yùn)行后輸出的結(jié)果是 ( )

A. 8 B. 7 C. 6 D. 5

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在多面體中,四邊形與四邊形均為邊長為2的正方形,為等腰直角三角形,,且平面平面,平面平面

(1)求證:平面平面;

(2)求多面體體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點(diǎn)在橢圓上,設(shè)分別為左頂點(diǎn)、上頂點(diǎn)、下頂點(diǎn),且下頂點(diǎn)到直線的距離為

(1)求橢圓的方程;

(2)如圖所示,過點(diǎn)作斜率為的直線交橢圓于,交軸于點(diǎn),若中點(diǎn),過作與直線垂直的直線,證明:對于任意的,直線恒過定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案