科目: 來源: 題型:
【題目】設(shè)非空集合s={x|m≤x≤l}滿足:當(dāng)x∈S時(shí),有y=x2∈S.給出如下三個(gè)命題:
①若m=1,則S={1};
②若m=﹣ ,則 ≤l≤1;
③若l= ,則﹣ ≤m≤0.
④若l=1,則﹣1≤m≤0或m=1.
其中正確命題的是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,圓的極坐標(biāo)方程為,已知與交于、兩點(diǎn),點(diǎn)位于第一象限.
(Ⅰ)求點(diǎn)和點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)圓的圓心為,點(diǎn)是直線上的動(dòng)點(diǎn),且滿足,若直線的參數(shù)方程為(為參數(shù)),則的值為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},記f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=( )
A.{1,2}
B.{1,2,3}
C.{3,5}
D.{3,5,7}
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2ax+a+2=0,當(dāng)a為何值時(shí),該方程:
(1)有兩個(gè)不同的正根;
(2)有不同的兩根且兩根在(1,3)內(nèi).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是利用斜二測(cè)畫法畫出的△ABO的直觀圖,已知O′B′=4,且△ABO的面積為16,過A′作A′C′⊥x′軸,則A′C′的長(zhǎng)為( )
A.
B.
C.
D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BM與AN所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)列{an}中,已知a1=1,a2=2,an+2= (k∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足2an+1=an+an+2的正整數(shù)n的值;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 問是否存在正整數(shù)m,n,使得S2n=mS2n﹣1?若存在,求出所有的正整數(shù)對(duì)(m,n);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線的斜率均存在,且直線的斜率之積為.
(1)求橢圓的離心率;
(2)設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn).若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)從該單位中任取2人,此2人中年薪收入高于7萬的人數(shù)記為,求的分布列和期望;
(3)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元,5.5萬元,6萬元,8.5萬元,預(yù)測(cè)該員工第五年的年薪為多少?
附:線性回歸方程中系數(shù)計(jì)算公式分別為:
, ,其中為樣本均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com