相關(guān)習(xí)題
 0  257705  257713  257719  257723  257729  257731  257735  257741  257743  257749  257755  257759  257761  257765  257771  257773  257779  257783  257785  257789  257791  257795  257797  257799  257800  257801  257803  257804  257805  257807  257809  257813  257815  257819  257821  257825  257831  257833  257839  257843  257845  257849  257855  257861  257863  257869  257873  257875  257881  257885  257891  257899  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+1)+ ﹣x2﹣ax(a∈R)
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a≥ 時(shí),設(shè)g(x)=ln[x2(ax+1)]+ ﹣3ax﹣f(x)(x>0)的兩個極值點(diǎn)x1 , x2(x1<x2)恰為φ(x)=lnx﹣cx2﹣bx的零點(diǎn),求y=(x1﹣x2)φ′( )的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線C 的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點(diǎn)O 為極點(diǎn),x 軸正半軸為極軸建立極坐標(biāo)系.

()求曲線C 的極坐標(biāo)方程;

()設(shè),若l 1 、l2與曲線C 相交于異于原點(diǎn)的兩點(diǎn) AB ,求AOB的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法正確的是( ).

A. ,“”是“”的必要不充分條件

B. 為真命題”是“為真命題” 的必要不充分條件

C. 命題“,使得”的否定是:“

D. 命題:“”,則是真命題

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)= (ax﹣ax)(a>0且a≠1).
(1)判斷f(x)的奇偶性.
(2)討論f(x)的單調(diào)性.
(3)當(dāng)x∈[﹣1,1]時(shí),f(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)為自然對數(shù)的底數(shù)),, .

(1)若的極值點(diǎn),且直線分別與函數(shù)的圖象交于,求兩點(diǎn)間的最短距離;

(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)y=f(x)(x≠0)對于任意的x,y∈R且x,y≠0滿足f(xy)=f(x)+f(y).
(1)求f(1),f(﹣1)的值;
(2)求證:y=f(x)為偶函數(shù);
(3)若y=f(x)在(0,+∞)上是增函數(shù),解不等式

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5}
(1)若AB,求實(shí)數(shù)m的取值范圍的集合;
(2)若A∩B=,求實(shí)數(shù)m的取值范圍的集合.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分12分)

某學(xué)校用簡單隨機(jī)抽樣方法抽取了100名同學(xué),對其日均課外閱讀時(shí)間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

t

男同學(xué)人數(shù)

7

11

15

12

2

1

女同學(xué)人數(shù)

8

9

17

13

3

2

若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”.

(1)將頻率視為概率,估計(jì)該校4000名學(xué)生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機(jī)抽取4位同學(xué)參加讀書日宣傳活動.

(i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;

(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目: 來源: 題型:

【題目】已知.

I)討論的單調(diào)性;

II)當(dāng)有最大值,且最大值大于時(shí),a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案