科目: 來源: 題型:
【題目】已知直線l過點M(1,2),且直線l與x軸正半軸和y軸的正半軸交點分別是A、B,(如圖,注意直線l與坐標軸的交點都在正半軸上)
(1)若三角形AOB的面積是4,求直線l的方程.
(2)求過點N(0,1)且與直線l垂直的直線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為2,線段D1B1上有兩個動點E、F,且EF=1,則下列結(jié)論中錯誤的是( )
A.AC⊥BE
B.AA1∥平面BEF
C.三棱錐A﹣BEF的體積為定值
D.△AEF的面積和△BEF的面積相等
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左,右焦點分別為.點在橢圓上,直線過坐標原點,若, .
(1)求橢圓的方程;
(2) 設橢圓在點處的切線記為直線,點在上的射影分別為,過作的垂線交軸于點,試問是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1個該產(chǎn)品獲利潤5元,未售出的產(chǎn)品,每個虧損3元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖如圖所示.該同學為這個開學季購進了160個該產(chǎn)品,以(,單位:個)表示這個開學季內(nèi)的市場需求量.
(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的中位數(shù);
(2)根據(jù)直方圖估計利潤不少于640元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個動點,∠CPB=α,∠DPA=β. (Ⅰ)當 最小時,求tan∠DPC的值;
(Ⅱ)當∠DPC=β時,求 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù)f(x)的定義域是(0,+∞),對于任意正實數(shù)m,n恒有f(mn)=f(m)+f(n),且當x>1時,f(x)>0,f(2)=1.
(1)求 的值;
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)求方程4sinx=f(x)的根的個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】圓(x+2)2+y2=5關于直線x﹣y+1=0對稱的圓的方程為( )
A.(x﹣2)2+y2=5
B.x2+(y﹣2)2=5
C.(x﹣1)2+(y﹣1)2=5
D.(x+1)2+(y+1)2=5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,現(xiàn)要在一塊半徑為1m,圓心角為 的扇形紙報AOB上剪出一個平行四邊形MNPQ,使點P在弧AB上,點Q在OA上,點M、N在OB上,設∠BOP=θ,平行四邊形MNPQ的面積為S.
(1)求S關于θ的函數(shù)關系式;
(2)求S的最大值及相應的θ角.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)設x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值.
(2)設函數(shù)h(x)=f(x)+g(x),若不等式|h(x)﹣m|≤1在[﹣ , ]上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com