相關(guān)習(xí)題
 0  258396  258404  258410  258414  258420  258422  258426  258432  258434  258440  258446  258450  258452  258456  258462  258464  258470  258474  258476  258480  258482  258486  258488  258490  258491  258492  258494  258495  258496  258498  258500  258504  258506  258510  258512  258516  258522  258524  258530  258534  258536  258540  258546  258552  258554  258560  258564  258566  258572  258576  258582  258590  266669 

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx,則(
A.f(x)在(0,+∞)上是增函數(shù)
B.f(x)在 上是增函數(shù)
C.當(dāng)x∈(0,1)時(shí),f(x)有最小值
D.f(x)在定義域內(nèi)無(wú)極值

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,已知F為拋物線y2=4x的焦點(diǎn),點(diǎn)A,B,C在該拋物線上,其中A,C關(guān)于x軸對(duì)稱(A在第一象限),且直線BC經(jīng)過(guò)點(diǎn)F.

(1)若△ABC的重心為G( ),求直線AB的方程;
(2)設(shè)SABO=S1 , SCFO=S2 , 其中O為坐標(biāo)原點(diǎn),求S12+S22的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)F1(﹣1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)M到點(diǎn)F2的距離是 ,線段MF1的中垂線交MF2于點(diǎn)P.

(1)當(dāng)點(diǎn)M變化時(shí),求動(dòng)點(diǎn)P的軌跡G的方程;
(2)設(shè)直線l:y=kx+m與軌跡G交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α、β,且α+β=π,求證:直線l經(jīng)過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,且∠BAD=60°,A1A=AB,E為BB1延長(zhǎng)線上的一點(diǎn),D1E⊥面D1AC.設(shè)AB=2.

(1)求二面角E﹣AC﹣D1的大小;
(2)在D1E上是否存在一點(diǎn)P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1= ,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1

(1)證明:BC⊥AB1
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,拋物線關(guān)于x軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線上.

(1)求該拋物線方程;
(2)若AB的中點(diǎn)坐標(biāo)為(1,﹣1),求直線AB方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知一四棱錐P﹣ABCD的三視圖如圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(Ⅰ)求四棱錐P﹣ABCD的體積.
(Ⅱ)若點(diǎn)E為PC的中點(diǎn),AC∩BD=O,求證:EO∥平面PAD;
(Ⅲ)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2 ,PD=CD=2,則二面角A﹣PB﹣C的正切值為

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示幾何體的三視圖,則該幾何體的表面積為

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系x′Oy所在的平面為β,直角坐標(biāo)系xOy所在的平面為α,且二面角α﹣y軸﹣β的大小等于30°.已知β內(nèi)的曲線C′的方程是3(x﹣2 2+4y2﹣36=0,則曲線C′在α內(nèi)的射影在坐標(biāo)系xOy下的曲線方程是

查看答案和解析>>

同步練習(xí)冊(cè)答案