科目: 來源: 題型:
【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測(cè)該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計(jì)公式分別為: = , = ﹣ .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且△的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的△的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),若
(1)求的值,并寫出函數(shù)的最小正周期(不需證明);
(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內(nèi)恰有個(gè)零點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)平面向量基本定理,若為一組基底,同一平面的向量可以被唯一確定地表示為 = ,則向量與有序?qū)崝?shù)對(duì)一一對(duì)應(yīng),稱為向量的基底下的坐標(biāo);特別地,若分別為軸正方向的單位向量,則稱為向量的直角坐標(biāo).
(I)據(jù)此證明向量加法的直角坐標(biāo)公式:若,則;
(II)如圖,直角中, , 點(diǎn)在上,且,求向量在基底下的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線 C2的極坐標(biāo)方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q為曲線 C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】過橢圓 =1的右焦點(diǎn)F作斜率k=﹣1的直線交橢圓于A,B兩點(diǎn),且 共線.
(1)求橢圓的離心率;
(2)當(dāng)三角形AOB的面積S△AOB= 時(shí),求橢圓的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex .
(1)當(dāng)a=﹣ 時(shí),求f(x)在點(diǎn)P(1,f(1))處的切線方程;
(2)討論f(x)的單調(diào)性;
(3)當(dāng)﹣ <a<﹣ 時(shí),f(x)是否存在極值?若存在,求所有極值的和的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角梯形中, , 為線段(含端點(diǎn))上一個(gè)動(dòng)點(diǎn),設(shè)對(duì)于函數(shù),給出以下三個(gè)結(jié)論:
①當(dāng)時(shí),函數(shù)的值域?yàn)?/span>;
②對(duì)于任意的,均有;
③對(duì)于任意的,函數(shù)的最大值均為4.
其中所有正確的結(jié)論序號(hào)為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: (a>b>0)左、右焦點(diǎn)分別為F1 , F2 , A(2,0)是橢圓的右頂點(diǎn),過F2且垂直于x軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點(diǎn)M,N(M,N不同于點(diǎn)A),若 =0, = ;
①求證:直線l過定點(diǎn);并求出定點(diǎn)坐標(biāo);
②求直線AT的斜率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com