科目: 來源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬元.
(1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬元,綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),寫出的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?
【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬元
【解析】
由已知求出第層樓房每平方米建筑費(fèi)用為萬元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用;
設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.
解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元,
且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,
可得建筑第1層樓房每平方米建筑費(fèi)用為:萬元.
建筑第1層樓房建筑費(fèi)用為:萬元.
樓房每升高一層,整層樓建筑費(fèi)用提高:萬元.
建筑第x層樓時(shí),該樓房綜合費(fèi)用為:.
;
設(shè)該樓房每平方米的平均綜合費(fèi)用為,
則:,
當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立.
學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬元.
【點(diǎn)睛】
本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知.
(1)求函數(shù)的最小正周期和對(duì)稱軸方程;
(2)若,求的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓:的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為,,分別為橢圓的左頂點(diǎn)和下頂點(diǎn),為橢圓上位于第一象限內(nèi)的一點(diǎn),交軸于點(diǎn),交軸于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求的值;
(3)求證:四邊形的面積為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,則稱集合M具有∟性,給出下列四個(gè)集合: ①M(fèi)={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方體的棱長為1,為中點(diǎn),連接,則異面直線和所成角的余弦值為_____.
【答案】
【解析】
連接CD1,CM,由四邊形A1BCD1為平行四邊形得A1B∥CD1,即∠CD1M為異面直線A1B和D1M所成角,再由已知求△CD1M的三邊長,由余弦定理求解即可.
如圖,
連接,由,可得四邊形為平行四邊形,
則,∴為異面直線和所成角,
由正方體的棱長為1,為中點(diǎn),
得,.
在中,由余弦定理可得,.
∴異面直線和所成角的余弦值為.
故答案為:.
【點(diǎn)睛】
本題考查異面直線所成角的求法,異面直線所成的角常用方法有:將異面直線平移到同一平面中去,達(dá)到立體幾何平面化的目的;或者建立坐標(biāo)系,通過求直線的方向向量得到直線夾角或其補(bǔ)角.
【題型】填空題
【結(jié)束】
16
【題目】在中,角所對(duì)的邊分別是,是的中點(diǎn),,,面積的最大值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,則_____.
【答案】
【解析】
分子分母同時(shí)除以,把目標(biāo)式轉(zhuǎn)為的表達(dá)式,代入可求.
,則
故答案為:.
【點(diǎn)睛】
本題考查三角函數(shù)的化簡求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類型可進(jìn)行弦化切;(2)“1”的靈活代換和的關(guān)系進(jìn)行變形、轉(zhuǎn)化.
【題型】填空題
【結(jié)束】
15
【題目】如圖,正方體的棱長為1,為中點(diǎn),連接,則異面直線和所成角的余弦值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)A(1,2),過點(diǎn)P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點(diǎn),則△ABC是( )
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定
查看答案和解析>>
科目: 來源: 題型:
【題目】交通管理部門為了解機(jī)動(dòng)車駕駛員(簡稱駕駛員)對(duì)某新法規(guī)的知曉情況,對(duì)甲、乙、丙、丁四個(gè)社區(qū)做分層抽樣調(diào)查.假設(shè)四個(gè)社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個(gè)社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個(gè)社區(qū)駕駛員的總?cè)藬?shù)N為( )
A.101
B.808
C.1212
D.2012
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的分別為a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2 . 該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ | 0 | 2 | 3 | 4 | 5 |
P | 0.03 | P1 | P2 | P3 | P4 |
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上確定一點(diǎn)E,使得PB∥平面ACE,并求 的值;
(2)在(1)條件下,求平面PAB與平面ACE所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com