科目: 來源: 題型:
【題目】已知橢圓C:+=1,(ab0)的離心率為,點(2,)在C上
(1)求C的方程;
(2)直線l不經(jīng)過原點O,且不平行于坐標軸,l與C有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F分別在A1B1,D1C1上,A1E=D1F=4.過點E,F的平面與此長方體的面相交,交線圍成一個正方形。
(1)(I)在圖中畫出這個正方形(不必說明畫法與理由);
(2)(II)求平面 把該長方體分成的兩部分體積的比值.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于非空實數(shù)集A,定義對任意.設非空實數(shù)集.現(xiàn)給出以下命題:(1)對于任意給定符合題設條件的集合C,D,必有;(2)對于任意給定符合題設條件的集合C,D,必有;(3)對于任意給定符合題設條件的集合C,D,必有;(4)對于任意給定符合題設條件的集合C,D,必存在常數(shù)a,使得對任意的,恒有.以上命題正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為了了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù) 用戶對其產(chǎn)品的滿意度的評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖和B地區(qū)用戶滿意度評分的頻率分布表.A地區(qū)用戶滿意度評分的頻率分布直方圖
B地區(qū)用戶滿意度評分的頻率分布表
滿意度評分分組 | [50,60) | [50,60) | [50,60) | [50,60) | [50,60) |
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
(1)(I)在答題卡上作出B地區(qū)用戶滿意度評分的頻率分布直方圖,并通過此圖比較兩地區(qū)滿意度評分的平均值及分 散 程度.(不要求計算出具體值,給出結(jié)論即可)
B地區(qū)用戶滿意度評分的頻率分布直方圖
(2)(II)根據(jù)用戶滿意度評分,將用戶的滿意度評分分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
估計那個地區(qū)的用戶的滿意度等級為不滿意的概率大,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2015全國統(tǒng)考II)設函數(shù)f(x)=ln(1+|x|)-,則使得f(x)f(2x-1)成立的x的取值范圍是()
A.(,1)
B.(-,)(1,+)
C.(-,)
D.(-,-)(,+)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記BOP=x,將動點P到A,B兩點距離之和表示為x的函數(shù)f(x),則圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設a,b,c,d均為正數(shù),且a+b=c+d,證明:(1)若ab > cd,則 +>+ ;(2) + > + 是|a-b| < |c-d|的充要條件
(1)(I)若abcd,則++
(2)(II)++是|a-b||c-d|的充要條件
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1:(t為參數(shù),且t≠0),其中0 , 在以O為極點x軸正半軸為極軸的極坐標系中,曲線C2::=2sin , C3:=2cos
(1)求C2與C3交點的直角坐標
(2)若C1與C2相交于點A,C1與C3相交于點B,求|AB|最大值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖O是等腰三角形ABC內(nèi)一點,圓O與△ABC的底邊BC交于M,N兩點,與底邊上的高交于點G,且與AB,AC分別相切于E,F兩點.
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目: 來源: 題型:
【題目】已知命題:“若,則關(guān)于x的不等式的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個數(shù)是( )
A.0B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com