科目: 來源: 題型:
【題目】已知函數(shù)的定義域為,對于任意的,都有且當時,,若.
(1)求證:為奇函數(shù);
(2)求證: 是上的減函數(shù);
(3)求函數(shù)在區(qū)間[-2,4]上的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機器在三年使用期內(nèi)的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).
(1)若=10,求y與x的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求n的最小值;
(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對稱軸之間的距離為,將函數(shù)的圖象向左平移個單位,得到的圖象關(guān)于軸對稱,則( )
A. 函數(shù)的周期為 B. 函數(shù)圖象關(guān)于點對稱
C. 函數(shù)圖象關(guān)于直線對稱 D. 函數(shù)在上單調(diào)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(1,13),且函數(shù)對稱軸方程為.
(1)求函數(shù)的解析式;
(2)設函數(shù),求在區(qū)間上的最小值
查看答案和解析>>
科目: 來源: 題型:
【題目】供電部門對某社區(qū)位居民2017年12月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是
A. 月份人均用電量人數(shù)最多的一組有人
B. 月份人均用電量不低于度的有人
C. 月份人均用電量為度
D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為
查看答案和解析>>
科目: 來源: 題型:
【題目】等比數(shù)列的定義可用數(shù)學符號語言描述為_______,其中,其通項公式_________,______,等比數(shù)列中,若則_________(),若,則的等比中項為____.
查看答案和解析>>
科目: 來源: 題型:
【題目】等差數(shù)列的定義可用數(shù)學符號語言描述為________,其中,其通項公式_________,__________=_________,等差數(shù)列中,若則________()
查看答案和解析>>
科目: 來源: 題型:
【題目】如果有一天我們分居異面直線的兩頭,那我一定穿越時空的阻隔,畫條公垂線向你沖來,一刻也不愿逗留.如圖1所示,在梯形中,//,且,,分別延長兩腰交于點,點為線段上的一點,將沿折起到的位置,使,如圖2所示.
(1)求證:;
(2)若,,四棱錐的體積為,求四棱錐的表面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,進而求得q和a1,根據(jù){an}為正項等比數(shù)列推知{bn}為等差數(shù)列,進而得出數(shù)列bn的通項公式和前n項和,可知Sn的表達式為一元二次函數(shù),根據(jù)其單調(diào)性進而求得Sn的最大值.
由題意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,則a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}為正項等比數(shù)列,
∴{bn}為等差數(shù)列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12時,(Sn)max=132.
故答案為:C.
【點睛】
這個題目考查的是等比數(shù)列的性質(zhì)和應用;解決等差等比數(shù)列的小題時,常見的思路是可以化基本量,解方程;利用等差等比數(shù)列的性質(zhì)解決題目;還有就是如果題目中涉及到的項較多時,可以觀察項和項之間的腳碼間的關(guān)系,也可以通過這個發(fā)現(xiàn)規(guī)律。
【題型】單選題
【結(jié)束】
12
【題目】已知數(shù)列是遞增數(shù)列,且對,都有,則實數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com