科目: 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 若命題均為真命題,則命題為真命題
B. “若,則”的否命題是“若”
C. 在,“”是“”的充要條件
D. 命題“”的否定為“”
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某IT從業(yè)者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)附注提供的有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程
(2)若把月收入不低于2萬(wàn)元稱(chēng)為“高收入者”.
試?yán)茫?/span>1)的結(jié)果,估計(jì)他36歲時(shí)能否稱(chēng)為“高收入者”?能否有95%的把握認(rèn)為年齡與收入有關(guān)系?
附注:①.參考數(shù)據(jù):,,,,,,,其中,取,
②.參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知等腰梯形ABCD如圖3所示,其中AB=8,BC=4,CD=4,線(xiàn)段CD上有一個(gè)動(dòng)點(diǎn)E,若則________ .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)在點(diǎn)點(diǎn)處的切線(xiàn)方程;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】給出定義:若(其中為整數(shù)),則叫做離實(shí)數(shù)最近的整數(shù),記作,即.設(shè)函數(shù),二次函數(shù),若函數(shù)與的圖象有且只有一個(gè)公共點(diǎn),則的取值不可能是( )
A.B.C.D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對(duì)任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】為了美化校園環(huán)境,學(xué)校打算在蘭蕙廣場(chǎng)上建造一個(gè)矩形花園,中間有三個(gè)完全一樣 的矩形花壇,每個(gè)花壇的面積均為294平方米,花壇四周的過(guò)道寬度均為2米,如圖所示,設(shè)矩形花壇的長(zhǎng)為米,寬為米,整個(gè)矩形花園的面積為平方米.
(1)試用、表示;
(2)為了節(jié)約用地,當(dāng)矩形花壇的長(zhǎng)為多少米時(shí),新建矩形花園占地最少,占地最少為多少平方米?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬(wàn)元)對(duì)年銷(xiāo)售量y(單位:萬(wàn)件)的影響,統(tǒng)計(jì)了近10年投入的年研發(fā)費(fèi)用x,與年銷(xiāo)售量的數(shù)據(jù),得到散點(diǎn)圖如圖所示:
(1)利用散點(diǎn)圖判斷,和(其中 為大于0的常數(shù))哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷(xiāo)售量的回歸方程類(lèi)型(只要給出判斷即可,不必說(shuō)明理由).
(2)對(duì)數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計(jì)量的值如下表:
15 | 15 | 28.25 | 56.5 |
根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;
(3)已知企業(yè)年利潤(rùn)z(單位:千萬(wàn)元)與,的關(guān)系為(其中…),根據(jù)(2)的結(jié)果,要使得該企業(yè)下年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?
附:對(duì)于一組數(shù)據(jù),…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),
(1)求實(shí)數(shù)的值;
(2)如果對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com