相關(guān)習(xí)題
 0  262278  262286  262292  262296  262302  262304  262308  262314  262316  262322  262328  262332  262334  262338  262344  262346  262352  262356  262358  262362  262364  262368  262370  262372  262373  262374  262376  262377  262378  262380  262382  262386  262388  262392  262394  262398  262404  262406  262412  262416  262418  262422  262428  262434  262436  262442  262446  262448  262454  262458  262464  262472  266669 

科目: 來(lái)源: 題型:

【題目】已知f(x)=奇函數(shù),且

1)求實(shí)數(shù)p ,q的值.

2)判斷函數(shù)fx)在上的單調(diào)性,并證明.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某學(xué)校為了解高三復(fù)習(xí)效果,從高三第一學(xué)期期中考試成績(jī)中隨機(jī)抽取50名考生的數(shù)學(xué)成績(jī),分成6組制成頻率分布直方圖如圖所示:

(1)求的值;并且計(jì)算這50名同學(xué)數(shù)學(xué)成績(jī)的樣本平均數(shù)

(2)該學(xué)校為制定下階段的復(fù)習(xí)計(jì)劃,從成績(jī)?cè)?/span>的同學(xué)中選出3位作為代表進(jìn)行座談,記成績(jī)?cè)?/span>的同學(xué)人數(shù)位,寫(xiě)出的分布列,并求出期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解全校學(xué)生本學(xué)期開(kāi)學(xué)以來(lái)的課外閱讀時(shí)間,學(xué)校采用分層抽樣方法,從中抽取了100名學(xué)生進(jìn)行問(wèn)卷調(diào)查.將樣本中的“初中學(xué)生”和“高中學(xué)生”,按學(xué)生的課外閱讀時(shí)間(單位:小時(shí))各分為5組:,,,,得其頻率分布直方圖如圖所示.

1)估計(jì)全校學(xué)生中課外閱讀時(shí)間在小時(shí)內(nèi)的總?cè)藬?shù)約是多少;

2)從全校課外閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,求至少有2個(gè)初中生的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,試討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),當(dāng)對(duì)任意的恒成立時(shí),求函數(shù)的最大值的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分別求適合下列條件的a的值.

(1)9∈(AB);(2){9}=AB

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)直線的方程為.

(1)若在兩坐標(biāo)軸上的截距相等,求的方程;

(2)若不經(jīng)過(guò)第二象限,求實(shí)數(shù)的取值范圍;

(3)若軸正半軸的交點(diǎn)為,與軸負(fù)半軸的交點(diǎn)為,求(為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓中心在原點(diǎn),焦點(diǎn)在軸上,為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),為橢圓的右焦點(diǎn).已知橢圓的離心率為,且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)是橢圓上位于軸上方的一個(gè)動(dòng)點(diǎn),直線分別與直線相交于點(diǎn),,求的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】下列命題為真命題的是(

A.為真命題,則為真命題;

B.”是“”的充分不必要條件;

C.命題“若,則”的否命題為“若,則”;

D.已知命題,使得,則,使得

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知圓的圓心在直線.

(1)若圓軸的正半軸相切,且該圓截軸所得弦的長(zhǎng)為,求圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,直線與圓交于兩點(diǎn),,若以為直徑的圓過(guò)坐標(biāo)原點(diǎn),求實(shí)數(shù)的值;

(3)已知點(diǎn),圓的半徑為3,且圓心在第一象限,若圓上存在點(diǎn),使(為坐標(biāo)原點(diǎn)),求圓心的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù).

1)證明:上單調(diào)遞減,在上單調(diào)遞增;

2)記函數(shù)的最小值為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案