科目: 來源: 題型:
【題目】某工廠家具車間做A,B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A,B型桌子分別需要1小時和2小時,漆工油漆一張A,B型桌子分別需要3小時和1小時;又知木工和漆工每天工作分別不得超過8小時和9小時,設(shè)該廠每天做A,B型桌子分別為x張和y張.
(1)試列出x,y滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若工廠做一張A,B型桌子分別獲得利潤為2千元和3千元,那么怎樣安排A,B型桌子生產(chǎn)的張數(shù),可使得所得利潤最大,最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需要,兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( 。
甲 | 乙 | 原料限額 | |
(噸) | 3 | 2 | 10 |
(噸) | 1 | 2 | 6 |
A. 10萬元B. 12萬元C. 13萬元D. 14萬元
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:上的點到右焦點F的最大距離為,離心率為.
求橢圓C的方程;
如圖,過點的動直線l交橢圓C于M,N兩點,直線l的斜率為,A為橢圓上的一點,直線OA的斜率為,且,B是線段OA延長線上一點,且過原點O作以B為圓心,以為半徑的圓B的切線,切點為令,求取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,某城市有一條從正西方AO通過市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站A,B,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為,設(shè)地鐵在AB部分的總長度為.
按下列要求建立關(guān)系式:
設(shè),將y表示成的函數(shù);
設(shè),用m,n表示y.
把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.
(1)求拋物線的方程;
(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方體的棱長為4,E、F分別是棱AB、的中點,聯(lián)結(jié)EF、、、E、E、E.
求三棱錐的體積;
求直線與平面所成角的大小結(jié)果用反三角函數(shù)值表示.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)A,B分別是雙曲線的左右頂點,設(shè)過的直線PA,PB與雙曲線分別交于點M,N,直線MN交x軸于點Q,過Q的直線交雙曲線的于S,T兩點,且,則的面積( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】越接近高考學(xué)生焦慮程度越強,四個高三學(xué)生中大約有一個有焦慮癥,經(jīng)有關(guān)機構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對應(yīng)的正常值變化情況如下表周數(shù)
周數(shù)x | 6 | 5 | 4 | 3 | 2 | 1. |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
其中,,,
(1)作出散點圖;
(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回方程(精確到0.01)
(3)根據(jù)經(jīng)驗觀測值為正常值的0.85~1.06為正常,若1.06~1.12為輕度焦慮,1.12~1.20為中度焦慮,1.20及以上為重度焦慮。若為中度焦慮及以上,則要進(jìn)行心理疏導(dǎo)。若一個學(xué)生在距高考第二周時觀測值為103,則該學(xué)生是否需要進(jìn)行心理疏導(dǎo)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com