科目: 來源: 題型:
【題目】長方形中, , 是中點(diǎn)(圖1).將△沿折起,使得(圖2)在圖2中:
(1)求證:平面 平面;
(2)在線段上是否存點(diǎn),使得二面角為大小為,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)拋物線:的焦點(diǎn)為,直線與交于,兩點(diǎn),的面積為.
(1)求的方程;
(2)若,是上的兩個(gè)動(dòng)點(diǎn),,試問:是否存在定點(diǎn),使得?若存在,求的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形為正方形,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點(diǎn)E、F分別是AB和PC的中點(diǎn).
(1)求證:AB⊥平面PAD;
(2)求證:EF//平面PAD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn).下列命題正確的為_______________.
①存在點(diǎn),使得//平面;
②對于任意的點(diǎn),平面平面;
③存在點(diǎn),使得平面;
④對于任意的點(diǎn),四棱錐的體積均不變.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在單位正方體中,點(diǎn)P在線段上運(yùn)動(dòng),給出以下四個(gè)命題:
異面直線與間的距離為定值;
三棱錐的體積為定值;
異面直線與直線所成的角為定值;
二面角的大小為定值.
其中真命題有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取200件作為樣本,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得到如下的頻率分布直方圖:
(1)求直方圖中的值;
(2)由頻率分布直方圖可認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,試計(jì)算這批產(chǎn)品中質(zhì)量指標(biāo)值落在上的件數(shù);
(3)設(shè)產(chǎn)品的生產(chǎn)成本為,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值滿足函數(shù)關(guān)系式,假設(shè)同組中的每個(gè)數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的右端點(diǎn)代替,試計(jì)算生產(chǎn)該食品的平均成本.參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè),分別為橢圓:的左右焦點(diǎn),已知橢圓上的點(diǎn)到焦點(diǎn),的距離之和為4.
(1)求橢圓的方程;
(2)過點(diǎn)作直線交橢圓于,兩點(diǎn),線段的中點(diǎn)為,連結(jié)并延長交橢圓于點(diǎn)(為坐標(biāo)原點(diǎn)),若,,等比數(shù)列,求線段的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】十八大以來,我國新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷售量數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
新能源產(chǎn)品年銷售(萬個(gè)) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)請畫出上表中年份代碼與年銷量的數(shù)據(jù)對應(yīng)的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷.
與中哪一個(gè)更適宜作為年銷售量關(guān)于年份代碼的回歸方程類型;
(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2019年某新能源產(chǎn)品的銷售量(精確到0.01).
參考公式:,.
參考數(shù)據(jù):,,,,,,,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com