相關(guān)習題
 0  264386  264394  264400  264404  264410  264412  264416  264422  264424  264430  264436  264440  264442  264446  264452  264454  264460  264464  264466  264470  264472  264476  264478  264480  264481  264482  264484  264485  264486  264488  264490  264494  264496  264500  264502  264506  264512  264514  264520  264524  264526  264530  264536  264542  264544  264550  264554  264556  264562  264566  264572  264580  266669 

科目: 來源: 題型:

【題目】甲、乙、丙、丁和戊5名學生進行某種勞動技術(shù)比賽,決出了第1到第5名的名次.甲乙兩名參賽者去詢問成績,回答者對甲說,很遺憾,你和乙都沒沒有拿到冠軍.”對乙說,你當然不會是最差的.”從這個回答分析,甲是第五名的概率是______.

查看答案和解析>>

科目: 來源: 題型:

【題目】考慮下面兩個定義域為(0,+∞)的函數(shù)fx)的集合:對任何不同的兩個正數(shù),都有,=對任何不同的兩個正數(shù),都有

1)已知,若,且,求實數(shù)的取值范圍

2)已知,的部分函數(shù)值由下表給出:

比較4的大小關(guān)系

3)對于定義域為的函數(shù),若存在常數(shù),使得不等式對任何都成立,則稱的上界,將中所有存在上界的函數(shù)組成的集合記作,判斷是否存在常數(shù),使得對任何,都有,若存在,求出的最小值,若不存在,說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合D{x1,x2|x10,x20x1+x2k}(其中k為正常數(shù)).

1)設(shè),求的取值范圍

2)求證:當時,不等式對任意恒成立

3)求使不等式對任意恒成立的的范圍

查看答案和解析>>

科目: 來源: 題型:

【題目】已知三棱柱中,,,,,分別為棱的中點

1)求證:

2)求直線所成的角

3)若為線段的中點,在平面內(nèi)的射影為,求

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù),當時,函數(shù)有極值

1)求函數(shù)的解析式;

2)求函數(shù)的極值;

3)若關(guān)于x的方程有三個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)是有理數(shù),集合,在下列集合中:①;②;③;④;與相等的集合的序號是_____________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求曲線在點處切線的方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)當時,恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知原命題“如果,那么關(guān)于的不等式的解集為”,那么原命題、逆命題、否命題和逆否命題是假命題的共有(

A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】垃圾種類可分為可回收垃圾,干垃圾,濕垃圾,有害垃圾,為調(diào)查中學生對垃圾分類的了解程度某調(diào)查小組隨機抽取了某市的名高中生,請他們指出生活中若干項常見垃圾的種類,把能準確分類不少于項的稱為“比較了解”少于三項的稱為“不太了解”調(diào)查結(jié)果如下:

項以上

男生(人)

女生(人)

1)完成如下列聯(lián)表并判斷是否有的把握認為了解垃圾分類與性別有關(guān)?

比較了解

不太了解

合計

男生

________

________

________

女生

________

________

________

合計

________

________

________

p>

2)抽取的名高中生中按照男、女生采用分層抽樣的方法抽取人的樣本.

i)求抽取的女生和男生的人數(shù);

ii)從人的樣本中隨機抽取兩人,求兩人都是女生的概率.

參考數(shù)據(jù):

,.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知AB是圓O的直徑,CD是圓上不同兩點,且,O所在平面.

1)求直線PBCD所成角;

2)若PB與圓O所在平面所成角為,且,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案