科目: 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
參數(shù)數(shù)據(jù)及公式:,,,,,,.
(1)若用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)用對數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:,經(jīng)計算得出線性回歸模型和對數(shù)模型的分別約為0.75和0.97,請用說明選擇哪個回歸模型更合適,并用此模型預(yù)測A超市廣告費支出為8萬元時的銷售額.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓的左、右焦點分別為F1,F2,離心率為,兩準線之間的距離為8.點P在橢圓E上,且位于第一象限,過點F1作直線PF1的垂線l1,過點F2作直線PF2的垂線l2.
(1)求橢圓E的標準方程;
(2)若直線l1,l2的交點Q在橢圓E上,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目: 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列{an}中,前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若恒成立,求k的取值范圍;
(3)是否存在正整數(shù)m,k,使得am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】化簡
(1)
(2)
【答案】(1) ;(2) .
【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1
(2)結(jié)合三角函數(shù)的性質(zhì)可得三角函數(shù)式的值為
試題解析:
(1)tan70°cos10°( tan20°﹣1)
=cot20°cos10°( ﹣1)
=cot20°cos10°( )
=×cos10°×()
=×cos10°×()
=×(﹣)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故=
點睛:三角函數(shù)式的化簡要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進行合理的拆分,從而正確使用公式 ;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結(jié)構(gòu)特征,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如遇到分式要通分等.
【題型】解答題
【結(jié)束】
18
【題目】平面內(nèi)給定三個向量
(1)求
(2)求滿足的實數(shù).
(3)若,求實數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓的方程為(x-1)2+(y-1)2=9,P(2,2)是該圓內(nèi)一點,過點P的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是______ .
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:若整數(shù)滿足:,稱為離實數(shù)最近的整數(shù),記作.給出函數(shù)的四個命題:
①函數(shù)的定義域為,值域為;
②函數(shù)是周期函數(shù),最小正周期為;
③函數(shù)在上是增函數(shù);
④函數(shù)的圖象關(guān)于直線對稱.
其中所有的正確命題的序號為()
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng) 時,求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數(shù) 的單調(diào)區(qū)間和極值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com