科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù),).在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線上恰有一個(gè)點(diǎn)到曲線的距離為1,求曲線的直角坐標(biāo)方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知圓Q:(x+2)2+(y-2)2=1,拋物線C:y2=4x的焦點(diǎn)為F,過F的直線l與拋物線C交于A,B兩點(diǎn),過F且與l垂直的直線l'與圓Q有交點(diǎn).
(1)求直線l'的斜率的取值范圍;
(2)求△AOB面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)某省的高考改革方案,考生應(yīng)在3門理科學(xué)科(物理、化學(xué)、生物)和3門文科學(xué)科(歷史、政治、地理)的6門學(xué)科中選擇3門學(xué)科參加考試.根據(jù)以往統(tǒng)計(jì)資料,1位同學(xué)選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門學(xué)科是相互獨(dú)立的.
(1)求1位考生至少選擇生物、物理兩門學(xué)科中的1門的概率;
(2)某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時(shí)選擇生物、物理兩門學(xué)科的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對(duì)于任意的,,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的方程,焦點(diǎn)為,已知點(diǎn)在上,且點(diǎn)到點(diǎn)的距離比它到軸的距離大1.
(1)試求出拋物線的方程;
(2)若拋物線上存在兩動(dòng)點(diǎn)(在對(duì)稱軸兩側(cè)),滿足(為坐標(biāo)原點(diǎn)),過點(diǎn)作直線交于兩點(diǎn),若,線段上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠連續(xù)6天對(duì)新研發(fā)的產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組數(shù)據(jù)如下表所示
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 | 4月6日 |
試銷價(jià)元 | 9 | 11 | 10 | 12 | 13 | 14 |
產(chǎn)品銷量件 | 40 | 32 | 29 | 35 | 44 |
(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關(guān)于的線性回歸方程,并預(yù)測4月6日的產(chǎn)品銷售量;
(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.
參考公式:
其中 ,
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:若數(shù)列滿足所有的項(xiàng)均由,1構(gòu)成且其中有個(gè),1有個(gè),則稱為“數(shù)列”.
(1),,為“數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?
(2),,為“數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得,且的概率為.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),實(shí)數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若存在,使得關(guān)于x的不等式成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com