科目: 來(lái)源: 題型:
【題目】“割圓術(shù)”是我國(guó)古代計(jì)算圓周率的一種方法.在公元年左右,由魏晉時(shí)期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時(shí)劉微就是利用這種方法,把的近似值計(jì)算到和之間,這是當(dāng)時(shí)世界上對(duì)圓周率的計(jì)算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來(lái)逼近未知的、要求的,用有限的來(lái)逼近無(wú)窮的.為此,劉微把它概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”.這種方法極其重要,對(duì)后世產(chǎn)生了巨大影響,在歐洲,這種方法后來(lái)就演變?yōu)楝F(xiàn)在的微積分.根據(jù)“割圓術(shù)”,若用正二十四邊形來(lái)估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù))
A.B.
C.D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)l:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn).
(Ⅰ)求曲線(xiàn)C被直線(xiàn)l截得的弦長(zhǎng);
(Ⅱ)與直線(xiàn)l垂直的直線(xiàn)EF與曲線(xiàn)C相切于點(diǎn)Q,求點(diǎn)Q的直角坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】春季氣溫逐漸攀升,病菌滋生傳播快,為了確保安全開(kāi)學(xué),學(xué)校按30名學(xué)生一批,組織學(xué)生進(jìn)行某種傳染病毒的篩查,學(xué)生先到醫(yī)務(wù)室進(jìn)行血檢,檢呈陽(yáng)性者需到防疫部門(mén)]做進(jìn)一步檢測(cè).學(xué)校綜合考慮了組織管理、醫(yī)學(xué)檢驗(yàn)?zāi)芰Φ榷嗳f(wàn)面的因素,根據(jù)經(jīng)驗(yàn),采用分組檢測(cè)法可有效減少工作量,具體操作如下:將待檢學(xué)生隨機(jī)等分成若干組,先將每組的血樣混在一起化驗(yàn),若結(jié)果呈陰性,則可斷定本組血樣合格,不必再做進(jìn)一步的檢測(cè);若結(jié)果呈陽(yáng)性,則本組中的每名學(xué)生再逐個(gè)進(jìn)行檢測(cè).現(xiàn)有兩個(gè)分組方案:方案一:將30人分成5組,每組6人;方案二:將30人分成6組,每組5人.已知隨機(jī)抽一人血檢呈陽(yáng)性的概率為0.5%,且每個(gè)人血檢是否呈陽(yáng)性相互獨(dú)立.
(Ⅰ)請(qǐng)幫學(xué)校計(jì)算一下哪一個(gè)分組方案的工作量較少?
(Ⅱ)已知該傳染疾病的患病率為0.45%,且患該傳染疾病者血檢呈陽(yáng)性的概率為99.9%,若檢測(cè)中有一人血檢呈陽(yáng)性,求其確實(shí)患該傳染疾病的概率.(參考數(shù)據(jù):(,)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:的焦點(diǎn)為F,Q是拋物線(xiàn)上的一點(diǎn),.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)過(guò)點(diǎn)作直線(xiàn)l與拋物線(xiàn)C交于M,N兩點(diǎn),在x軸上是否存在一點(diǎn)A,使得x軸平分?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是正方形,梯形底面ABCD,且.
(Ⅰ)證明:平面平面;
(Ⅱ)求直線(xiàn)AF與平面CDE所成角的大。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成,菱形的一個(gè)角度是,這樣的設(shè)計(jì)含有深刻的數(shù)學(xué)原理、我國(guó)著名數(shù)學(xué)家華羅庚曾專(zhuān)門(mén)研究蜂巢的結(jié)構(gòu)著有《談?wù)勁c蜂房結(jié)構(gòu)有關(guān)的數(shù)學(xué)問(wèn)題》.用數(shù)學(xué)的眼光去看蜂巢的結(jié)構(gòu),如圖,在六棱柱的三個(gè)頂點(diǎn)A,C,E處分別用平面BFM,平面BDO,平面DFN截掉三個(gè)相等的三棱錐,,,平面BFM,平面BDO,平面DFN交于點(diǎn)P,就形成了蜂巢的結(jié)構(gòu).如圖,設(shè)平面PBOD與正六邊形底面所成的二面角的大小為,則有:( )
A.B.
C.D.以上都不對(duì)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】函數(shù)(,)的部分圖象如圖中實(shí)線(xiàn)所示,圖中圓C與的圖象交于M,N兩點(diǎn),且M在y軸上,則下列說(shuō)法中正確的是( )
A.函數(shù)的最小正周期是2π
B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng)
C.函數(shù)在單調(diào)遞增
D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對(duì)稱(chēng)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn).
(Ⅰ)求曲線(xiàn)被直線(xiàn)截得的弦長(zhǎng);
(Ⅱ)與直線(xiàn)垂直的直線(xiàn)與曲線(xiàn)相切于點(diǎn),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),為函數(shù)的兩個(gè)極值點(diǎn),求證.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某傳染病疫情爆發(fā)期間,當(dāng)?shù)卣e極整合醫(yī)療資源,建立“艙醫(yī)院”對(duì)所有密切接觸者進(jìn)行14天的隔離觀察治療.治療期滿(mǎn)后若檢測(cè)指標(biāo)仍未達(dá)到合格標(biāo)準(zhǔn),則轉(zhuǎn)入指定專(zhuān)科醫(yī)院做進(jìn)一步的治療.“艙醫(yī)院”對(duì)所有人員在“入口”及“出口”時(shí)都進(jìn)行了醫(yī)學(xué)指標(biāo)檢測(cè),若“入口”檢測(cè)指標(biāo)在35以下者則不需進(jìn)入“艙醫(yī)院”而是直接進(jìn)入指定專(zhuān)科醫(yī)院進(jìn)行治療.以下是20名進(jìn)入“艙醫(yī)院”的密切接觸者的“入口”及“出口”醫(yī)學(xué)檢測(cè)指標(biāo):
入口 | 50 | 35 | 35 | 40 | 55 | 90 | 80 | 60 | 60 | 60 | 65 | 35 | 60 | 90 | 35 | 40 | 55 | 50 | 65 | 50 |
出口 | 70 | 50 | 60 | 50 | 75 | 70 | 85 | 70 | 80 | 70 | 55 | 50 | 75 | 90 | 60 | 60 | 65 | 70 | 75 | 70 |
(Ⅰ)建立關(guān)于的回歸方程;(回歸方程的系數(shù)精確到0.1)
(Ⅱ)如果60是“艙醫(yī)院”的“出口”最低合格指標(biāo),那么,“入口”指標(biāo)低于多少時(shí),將來(lái)這些密切接觸者將不能進(jìn)入“艙醫(yī)院”而是直接進(jìn)入指定專(zhuān)科醫(yī)院接受治療.(檢測(cè)指標(biāo)為整數(shù))
附注:參考數(shù)據(jù):,.
參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com