科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求C的普通方程和的直角坐標(biāo)方程;
(2)求C上的點到距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標(biāo)有第0站(出發(fā)地),第1站,第2站,……,第100站. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(獲勝)或跳到第100站(失敗)時,該游戲結(jié)束. 設(shè)棋子跳到第站的概率為.
(1)求,,,并根據(jù)棋子跳到第站的情況寫出與、的遞推關(guān)系式();
(2)求證:數(shù)列為等比數(shù)列;
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)證明:平面ADE⊥平面ACD;
(2)當(dāng)C點為半圓的中點時,求二面角D﹣AE﹣B的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為是上一點.
(1)求橢圓的方程;
(2)設(shè)是分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于的直線交于異于的兩點.點關(guān)于原點的對稱點為.證明:直線與軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了了解全校學(xué)生“體能達(dá)標(biāo)”的情況,從全校1000名學(xué)生中隨機(jī)選出40名學(xué)生,參加“體能達(dá)標(biāo)”預(yù)測,并且規(guī)定“體能達(dá)標(biāo)”預(yù)測成績小于60分的為“不合格”,否則為“合格”若該校“不合格”的人數(shù)不超過總?cè)藬?shù)的,則全校“體能達(dá)標(biāo)”為“合格”;否則該校“體能達(dá)標(biāo)”為“不合格”,需要重新對全校學(xué)生加強(qiáng)訓(xùn)練現(xiàn)將這40名學(xué)生隨機(jī)分為甲、乙兩個組,其中甲組有24名學(xué)生,乙組有16名學(xué)生經(jīng)過預(yù)測后,兩組各自將預(yù)測成績統(tǒng)計分析如下:甲組的平均成績?yōu)?/span>70,標(biāo)準(zhǔn)差為4;乙組的平均成績?yōu)?/span>80,標(biāo)準(zhǔn)差為6(題中所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù)).
(1)求這40名學(xué)生測試成績的平均分和標(biāo)準(zhǔn)差;
(2)假設(shè)該校學(xué)生的“體能達(dá)標(biāo)”預(yù)測服從正態(tài)分布用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值.利用估計值估計:該校學(xué)生“體能達(dá)標(biāo)”預(yù)測是否“合格”?
附:①個數(shù)的平均數(shù),方差;
②若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩位同學(xué)玩游戲,對于給定的實數(shù),按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把乘以2后再減去6;如果出現(xiàn)一個正面朝上,一個反面朝上,則把除以2后再加上6,這樣就可得到一個新的實數(shù),對實數(shù)仍按上述方法進(jìn)行一次操作,又得到一個新的實數(shù),當(dāng)時,甲獲勝,否則乙獲勝,若甲勝的概率為,則的取值范圍是____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的圖象過原點,且在原點處的切線與直線垂直.(為自然對數(shù)的底數(shù)).
(1)討論的單調(diào)性;
(2)若對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com