相關(guān)習(xí)題
 0  264872  264880  264886  264890  264896  264898  264902  264908  264910  264916  264922  264926  264928  264932  264938  264940  264946  264950  264952  264956  264958  264962  264964  264966  264967  264968  264970  264971  264972  264974  264976  264980  264982  264986  264988  264992  264998  265000  265006  265010  265012  265016  265022  265028  265030  265036  265040  265042  265048  265052  265058  265066  266669 

科目: 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對任意,證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點(diǎn),點(diǎn),點(diǎn),動圓軸相切于點(diǎn),過點(diǎn)的直線與圓相切于點(diǎn),過點(diǎn)的直線與圓相切于點(diǎn)均不同于點(diǎn)),且交于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.

(1)證明:為定值,并求的方程;

(2)設(shè)直線的另一個交點(diǎn)為,直線交于兩點(diǎn),當(dāng)三點(diǎn)共線時(shí),求四邊形的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某普通高中為了解本校高三年級學(xué)生數(shù)學(xué)學(xué)習(xí)情況,對一?荚嚁(shù)學(xué)成績進(jìn)行分析,從中抽取了名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì)(該校全體學(xué)生的成績均在),按下列分組,,,,,,,作出頻率分布直方圖,如圖;樣本中分?jǐn)?shù)在內(nèi)的所有數(shù)據(jù)的莖葉圖如圖

根據(jù)往年錄取數(shù)據(jù)劃出預(yù)錄分?jǐn)?shù)線,分?jǐn)?shù)區(qū)間與可能被錄取院校層次如表.

(1)求的值及頻率分布直方圖中的值;

(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學(xué)生中任取人,求此人都不能錄取為?频母怕剩

(3)在選取的樣本中,從可能錄取為自招和?苾蓚層次的學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行調(diào)研,用表示所抽取的名學(xué)生中為自招的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐, 平面, ,點(diǎn)分別為的中點(diǎn),設(shè)直線與平面交于點(diǎn).

1已知平面平面,求證: .

2求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列滿足: , ,

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;

(3)將數(shù)列中的部分項(xiàng)按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個滿足條件的無窮等比數(shù)列

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)設(shè)求關(guān)于的函數(shù)時(shí)的值域的表達(dá)式;

(3)若關(guān)于的不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知復(fù)數(shù)滿足,的虛部為2,

1)求復(fù)數(shù)

2)設(shè)在復(fù)平面上對應(yīng)點(diǎn)分別為,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于,兩點(diǎn),且,求直線的傾斜角.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).

1)若,證明在區(qū)間上沒有零點(diǎn);

2)在恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計(jì)圖如圖:

1)估計(jì)該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;

2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.

查看答案和解析>>

同步練習(xí)冊答案