科目: 來源: 題型:
【題目】(1)閱讀以下案例,利用此案例的想法化簡.
案例:考察恒等式左右兩邊的系數(shù).
因?yàn)橛疫?/span>,
所以,右邊的系數(shù)為,
而左邊的系數(shù)為,
所以=.
(2)求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線l的普通方程以及曲線C的參數(shù)方程;
(2)過曲線C上任意一點(diǎn)E作與直線l的夾角為的直線,交l于點(diǎn)F,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別是,,點(diǎn),若的內(nèi)切圓的半徑與外接圓的半徑的比是.
(1)求橢圓的方程;
(2)設(shè)為橢圓的右頂點(diǎn),設(shè)圓:,不與軸垂直的直線與交于、兩點(diǎn),原點(diǎn)到直線的距離為,線段、分別與橢圓交于、,,垂足為.設(shè),,的面積為,的面積為.
①試確定與的關(guān)系式;、
②求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,對任意的,存在,使得成立,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:10之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(1)用表示甲同學(xué)上學(xué)期間的每周五天中7:10之前到校的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)記“上學(xué)期間的某周的五天中,甲同學(xué)在7:10之前到校的天數(shù)比乙同學(xué)在7:10之前到校的天數(shù)恰好多3天”為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等比數(shù)列的前n項和為,且當(dāng)時,是與2m的等差中項為實(shí)數(shù).
(1)求m的值及數(shù)列的通項公式;
(2)令,是否存在正整數(shù)k,使得對任意正整數(shù)n均成立?若存在,求出k的最大值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),下列說法正確的是__________.的值域是;當(dāng)時,方程有兩個不等實(shí)根;若函數(shù)有三個零點(diǎn)時,則;經(jīng)過有三條直線與相切.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個三位數(shù):個位、十位、百位上的數(shù)字依次為,,,當(dāng)且僅當(dāng),時,稱這樣的數(shù)為“凸數(shù)”(如243),現(xiàn)從集合中取出三個不同的數(shù)組成一個三位數(shù),則這個三位數(shù)是“凸數(shù)”的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com