相關習題
 0  265967  265975  265981  265985  265991  265993  265997  266003  266005  266011  266017  266021  266023  266027  266033  266035  266041  266045  266047  266051  266053  266057  266059  266061  266062  266063  266065  266066  266067  266069  266071  266075  266077  266081  266083  266087  266093  266095  266101  266105  266107  266111  266117  266123  266125  266131  266135  266137  266143  266147  266153  266161  266669 

科目: 來源: 題型:

【題目】若動點到兩點的距離之比為.

1)求動點的軌跡的方程;

2)若為橢圓上一點,過點作曲線的切線與橢圓交于另一點,求面積的取值范圍(為坐標原點).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示的幾何體中,為直三棱柱,四邊形為平行四邊形,, .

1)若,證明:四點共面,且

2)若,二面角的余弦值為,求直線與平面所成角.

查看答案和解析>>

科目: 來源: 題型:

【題目】某花圃為提高某品種花苗質量,開展技術創(chuàng)新活動,在實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80分及以上的花苗為優(yōu)質花苗.

1)用樣本估計總體,以頻率作為概率,若在兩塊實驗地隨機抽取3株花苗,求所抽取的花苗中優(yōu)質花苗數的分布列和數學期望;

2)填寫下面的列聯表,并判斷是否有99%的把握認為優(yōu)質花苗與培育方法有關.

優(yōu)質花苗

非優(yōu)質花苗

合計

甲培育法

20

乙培育法

10

合計

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸正半軸為極軸的建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程;

2)若點與點分別為曲線動點,求的最小值,并求此時的點坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數處的切線方程為.

1)求的值;

2)當時,恒成立,求整數的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓,為橢圓的右焦點,為橢圓上一點,的離心率

1)求橢圓的標準方程;

2)斜率為的直線過點交橢圓兩點,線段的中垂線交軸于點,試探究是否為定值,如果是,請求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為了解高三男生的體能達標情況,抽調了120名男生進行立定跳遠測試,根據統計數據得到如下的頻率分布直方圖.若立定跳遠成績落在區(qū)間的左側,則認為該學生屬“體能不達標的學生,其中分別為樣本平均數和樣本標準差,計算可得(同一組中的數據用該組區(qū)間的中點值作代表).

1)若該校高三某男生的跳遠距離為,試判斷該男生是否屬于“體能不達標”的學生?

2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進行某體能訓練,求選出的兩人中恰有一人跳遠距離在的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,圓柱的軸截面是邊長為2的正方形,點P是圓弧上的一動點(不與重合),點Q是圓弧的中點,且點在平面的兩側.

1)證明:平面平面;

2)設點P在平面上的射影為點O,點分別是的重心,當三棱錐體積最大時,回答下列問題.

i)證明:平面;

ii)求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】“不忘初心、牢記使命”主題教育活動正在全國開展,某區(qū)政府為統計全區(qū)黨員干部一周參與主題教育活動的時間,從全區(qū)的黨員干部中隨機抽取n名,獲得了他們一周參加主題教育活動的時間(單位:時)的頻率分布直方圖,如圖所示,已知參加主題教育活動的時間在內的人數為92.

1)估計這些黨員干部一周參與主題教育活動的時間的平均值;

2)用頻率估計概率,如果計劃對全區(qū)一周參與主題教育活動的時間在內的黨員干部給予獎勵,且參與時間在,內的分別獲二等獎和一等獎,通過分層抽樣方法從這些獲獎人中隨機抽取5人,再從這5人中任意選取3人,求3人均獲二等獎的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數.

1)討論的單調性;

2)如果方程有兩個不相等的解,且,證明:.

查看答案和解析>>

同步練習冊答案