科目: 來源: 題型:
【題目】已知橢圓與拋物線在第一象限的交點為,橢圓的左、右焦點分別為,其中也是拋物線的焦點,且.
(1)求橢圓的方程;
(2)過的直線(不與軸重合)交橢圓于兩點,點為橢圓的左頂點,直線分別交直線于點,求證:為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在一個正實數(shù),滿足當時,恒成立,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三陵錐中,為等腰直角三角形,,為正三角形,為的中點.
(1)證明:平面平面;
(2)若二面角的平面角為銳角,且棱錐的體積為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)給出兩個條件:①,②,從中選出一個條件補充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個都選,則按第一個解答計分)在中,分別為內(nèi)角所對的邊( ).
(1)求;
(2)若,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進行科學試驗.為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進行做接種試驗.該試驗的設(shè)計為:①對參加試驗的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗共進行3個周期.已知每只小白鼠接種后當天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當天是否出現(xiàn)癥狀與上次接種無關(guān).
(1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗,求一只小白鼠至多能參加一個接種周期試驗的概率;
(2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3次癥狀,則在這個接種周期結(jié)束后,對其終止試驗.設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在《增刪算法統(tǒng)宗》中有這樣一則故事:“三百七十八里關(guān),初行健步不為難;次日腳痛減一半,如此六日過其關(guān).”則下列說法正確的是( )
A.此人第二天走了九十六里路B.此人第三天走的路程站全程的
C.此人第一天走的路程比后五天走的路程多六里D.此人后三天共走了42里路
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( )
A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個點
B.從獨立性檢驗可知有99%的把握認為吃地溝油與患胃腸癌有關(guān)系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.將一組數(shù)據(jù)的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,其方差也要加上或減去這個常數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列的首項為1,各項均為正數(shù),其前項和為,,.
(1)求,的值;
(2)求證:數(shù)列為等差數(shù)列;
(3)設(shè)數(shù)列滿足,,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的定義域為,若滿足,則稱函數(shù)為“型函數(shù)”.
(1)判斷函數(shù)和是否為“型函數(shù)”,并說明理由;
(2)設(shè)函數(shù),記為函數(shù)的導函數(shù).
①若函數(shù)的最小值為1,求的值;
②若函數(shù)為“型函數(shù)”,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com