相關(guān)習(xí)題
 0  266562  266570  266576  266580  266586  266588  266592  266598  266600  266606  266612  266616  266618  266622  266628  266630  266636  266640  266642  266646  266648  266652  266654  266656  266657  266658  266660  266661  266662  266664  266666  266669 

科目: 來源: 題型:

【題目】在直角坐標中,圓,圓。

()在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓的極坐標方程,并求出圓的交點坐標(用極坐標表示);

()求圓的公共弦的參數(shù)方程。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)求證: .

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)記的導(dǎo)數(shù),若當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知邊長為的等邊三角形的一個頂點位于原點,另外兩個頂點在拋物線)上.

1)求拋物線的方程;

2)直線交拋物線兩點,交拋物線的準線于點,交軸于點,若.證明:直線過定點,并求出定點坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】為改善環(huán)境,節(jié)約資源,我國自2019年起在全國地級及以上城市全面啟動生活垃圾分類,垃圾分類已成為一種潮流.某市一小區(qū)的主管部門為了解居民對垃圾分類的認知是否與其受教育程度有關(guān),對該小區(qū)居民進行了隨機抽樣調(diào)查,得到如下統(tǒng)計數(shù)據(jù)的列聯(lián)表:

知道如何對垃圾進行分類

不知道如何對垃圾進行分類

合計

未受過高等教育

10

受過高等教育

合計

50

1)求列聯(lián)表中的,,,的值,并估計該小區(qū)受過高等教育的居民知道如何對垃圾進行分類的概率;

2)根據(jù)列聯(lián)表判斷能否有的把握認為該小區(qū)居民對垃圾分類的認知與其受教育程度有關(guān)?

參考數(shù)據(jù)及公式:

,其中.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)當時,求曲線在點處的切線方程;

2)若,都有成立,求的取值范圍;

3)當時,設(shè),求在區(qū)間上的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻.在算籌記數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如下表:

數(shù)字形式

縱式

橫式

表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖所示.如果把根算籌以適當?shù)姆绞饺糠湃胂旅娴谋砀裰,那么可以表示的三位?shù)的個數(shù)為______.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓)經(jīng)過點,且兩個焦點,的坐標依次為.

(1)求橢圓的標準方程;

(2)設(shè),是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,若,證明:直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如下頻數(shù)分布表:

收看時間(單位:小時)

收看人數(shù)

14

30

16

28

20

12

(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“體育達人”,否則定義為“非體育達人”,請根據(jù)頻數(shù)分布表補全列聯(lián)表:

合計

體育達人

40

非體育達人

30

合計

并判斷能否有的把握認為該校教職工是否為“體育達人”與“性別”有關(guān);

(2)在全!绑w育達人”中按性別分層抽樣抽取6名,再從這6名“體育達人”中選取2名作冬奧會知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在菱形中,,平面,,是線段的中點,.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案