10.如圖,水平軌道AB與豎直固定圓軌道相切于B點(diǎn),C為圓軌道最高點(diǎn),圓軌道半徑R=5m.一質(zhì)量m=60kg的志愿者,駕駛質(zhì)量M=940kg、額定功率P=40kw的汽車體驗(yàn)通過圓軌道時(shí)所受底座的作用力,汽車從A點(diǎn)由靜止以加速度a=2m/s2做勻加速運(yùn)動(dòng),到達(dá)B點(diǎn)時(shí),志愿者調(diào)節(jié)汽車牽引力,使汽車勻速率通過圓軌道又回到B點(diǎn),志愿者在C點(diǎn)時(shí)所受底座的支持力等于志愿者的重力,已知汽車在水平軌道及圓軌道上的阻力均為汽車對(duì)軌道壓力的0.1倍,取g=10m/s2,計(jì)算中將汽車視為質(zhì)點(diǎn).
求:
(1)汽車在C點(diǎn)的速率;
(2)汽車在C點(diǎn)的牽引功率;
(3)AB間的距離及汽車從A點(diǎn)經(jīng)圓軌道又回到B點(diǎn)的過程所用的時(shí)間.

分析 (1)抓住徑向的合力提供向心力,運(yùn)用牛頓第二定律求出汽車在C點(diǎn)的速率.
(2)對(duì)整體分析,根據(jù)牛頓得讓定律求出C點(diǎn)的正壓力,從而得出阻力的大小,抓住牽引力等于阻力,根據(jù)P=Fv求出牽引功率.
(3)根據(jù)牛頓第二定律求出在AB軌道上的牽引力,結(jié)合B點(diǎn)的速度判斷功率是否達(dá)到額定功率,判斷出AB段一直做勻加速直線運(yùn)動(dòng),根據(jù)速度時(shí)間公式求出在AB段運(yùn)動(dòng)的時(shí)間,根據(jù)位移時(shí)間公式求出AB間的距離.結(jié)合在圓軌道運(yùn)動(dòng)的時(shí)間求出總時(shí)間的大小.

解答 解:(1)在C點(diǎn),由牛頓第二定律得,$2mg=m\frac{{{v}_{C}}^{2}}{R}$,
代入數(shù)據(jù)解得vC=10m/s.
(2)在C點(diǎn),設(shè)汽車所受軌道支持力為FN,牽引力為F1,阻力為f1,
對(duì)M、m整體,由牛頓第二定律得,${F}_{N}+(M+m)g=(M+m)\frac{{{v}_{C}}^{2}}{R}$,
牽引力F1=f1,
f1=0.1FN,
牽引功率P1=F1vC,
代入數(shù)據(jù)解得P1=10kW.
(3)在水平軌道AB上,設(shè)汽車牽引力為F2,由牛頓第二定律得,
F2-0.1(M+m)g=(M+m)a,
在B點(diǎn),vB=vC=10m/s,
汽車在水平軌道上運(yùn)動(dòng)到B點(diǎn)時(shí),牽引功率P2=F2vB=30kW<40kW,汽車在AB段一直做勻加速直線運(yùn)動(dòng),
設(shè)汽車在AB上運(yùn)動(dòng)時(shí)間為t1,沿圓軌道運(yùn)動(dòng)的時(shí)間為t2,由運(yùn)動(dòng)學(xué)公式得,
vB=at1,
$x=\frac{1}{2}a{{t}_{1}}^{2}$,
${t}_{2}=\frac{2πR}{{v}_{C}}$,
代入數(shù)據(jù)解得x=25m,
則t=t1+t2=(5+π)s.
答:(1)汽車在C點(diǎn)的速率為10m/s;
(2)汽車在C點(diǎn)的牽引功率為10kW;
(3)AB間的距離為25m,汽車從A點(diǎn)經(jīng)圓軌道又回到B點(diǎn)的過程所用的時(shí)間為(5+π)s.

點(diǎn)評(píng) 本題考查了功率、牛頓第二定律與圓周運(yùn)動(dòng)的綜合,知道圓周運(yùn)動(dòng)向心力的來源,在最高點(diǎn)靠重力和彈力的合力提供向心力,在最高點(diǎn),牽引力等于阻力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:填空題

20.一只足球質(zhì)量為1.5kg,某人將它豎直向上踢出,球上升的最大高度為6m.若空氣阻力不計(jì),則人對(duì)球做的功為90J;球上升過程中,當(dāng)動(dòng)能是重力勢(shì)能2倍時(shí),則球離踢出點(diǎn)的高度為2m.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

1.如圖所示,間距為L的光滑平行金屬導(dǎo)軌水平地放置在豎直方向的磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場(chǎng)中,一端接有阻值為R的電阻,電阻為r、質(zhì)量為m的導(dǎo)體棒放置在導(dǎo)軌上,在外力F作用下從t=0時(shí)刻開始運(yùn)動(dòng),其速度規(guī)律為v=vmsinωt,不計(jì)導(dǎo)軌電阻,電壓表為理想電表,求:
(1)電壓表的示數(shù);
(2)從t=0到t=$\frac{π}{ω}$時(shí)間內(nèi)電阻R上產(chǎn)生的熱量;
(3)從t=0到t=$\frac{π}{2ω}$時(shí)間內(nèi)外力F所做的功.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

18.如圖所示,a、b是水平繩上的兩點(diǎn),相距42cm,一列正弦波沿繩傳播,每當(dāng)a點(diǎn)經(jīng)過平衡位置向上運(yùn)動(dòng)時(shí),b點(diǎn)正好到達(dá)上方最大位移處,則此波的波長可能是( 。
A.168cmB.42cmC.30cmD.24cm

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

5.下列說法正確的是( 。
A.分子運(yùn)動(dòng)的平均速度可能為零,瞬時(shí)速度不可能為零
B.雨水沒有透過布雨傘是因?yàn)橐后w存在表面張力
C.熱量能夠自發(fā)地從高溫物體傳到低溫物體,也能自發(fā)地從低溫物體傳到高溫物體
D.0℃的鐵和0℃的冰,它們的分子平均動(dòng)能相同

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

15.如圖所示,A、B分別為豎直放置的圓軌道的最低點(diǎn)和最高點(diǎn),已知軌道半徑為0.5m,小球通過A點(diǎn)時(shí)速度大小為2$\sqrt{7}$m/s,則該小球通過最高點(diǎn)B的速度值可能是( 。
A.2.1m/sB.3.2m/sC.6.2m/sD.10m/s

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

2.某同學(xué)利用雙縫干涉實(shí)驗(yàn)裝置測(cè)定某一光的波長,已知雙縫間距為d,雙縫到屏的距離為L,將測(cè)量頭的分劃板中心刻線與某一亮條紋的中心對(duì)齊,并將該條紋記為第一亮條紋,其示數(shù)如圖所示,此時(shí)的示數(shù)x1=0.776mm.然后轉(zhuǎn)動(dòng)測(cè)量頭,使分劃板中心刻線與第n亮條紋的中心對(duì)齊,測(cè)出第n亮條紋示數(shù)為x2.由以上數(shù)據(jù)可求得該光的波長表達(dá)式λ=$\frac{d({x}_{2}-{x}_{1})}{L(n-1)}$(用給出的字母符號(hào)表示).

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

19.如圖所示,當(dāng)平行板電容器充電后,在極板間有一個(gè)用絕緣的細(xì)繩拴著帶正電的小球,小球的質(zhì)量為m,電荷量為q.現(xiàn)在向右偏θ角度;電源的電動(dòng)勢(shì)為ε,內(nèi)阻為r.閉合電建S后,則求兩極板間的距離d(  )
A.d=$\frac{εq}{mgtanθ}$B.d=$\frac{εq}{mgsinθ}$C.d=$\frac{mgtanθ}{E}$D.d=$\frac{Eq}{mgsinθ}$

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

2.由開普勒第一定律可知( 。
A.太陽系中所有行星的運(yùn)動(dòng)軌道都是橢圓
B.太陽系中極個(gè)別行星的運(yùn)動(dòng)軌道可能是圓
C.太陽系中各行星的運(yùn)動(dòng)軌道并沒有共同的焦點(diǎn)
D.只有行星繞太陽運(yùn)動(dòng)時(shí)的軌道才是橢圓的

查看答案和解析>>

同步練習(xí)冊(cè)答案