江西省南昌市2008―2009學(xué)年度高三第二輪復(fù)習(xí)測試(四)

數(shù) 學(xué) 試 題

一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.已知集合若M∩N={-3},則a的值是(    )

       A.-1                      B.0                        C.1                       D.3

試題詳情

2.函數(shù)的定義域是                                                     (    )

試題詳情

       A.(,+∞)    B.(,1)         C.()      D.(-∞,

試題詳情

3.將直線沿x軸向左平移1個(gè)單位,所得直線與圓

試題詳情

   相切,則實(shí)數(shù)的值為                                                                                      (    )

       A.0或10              B.-2或8                C.-3或7               D.1或11

試題詳情

4.設(shè)Sn為數(shù)列{an}前n項(xiàng)和,且an=-2n+1,則數(shù)列的前11項(xiàng)和為            (    )

       A.-45                    B.-50                     C.-55                    D.-66

試題詳情

5.已知函數(shù)(a、b為常數(shù)a≠0,x∈R)在處取得最小值,

試題詳情

   則函數(shù)是                                                                                   (    )

       A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱

試題詳情

       B.偶函數(shù)且它的圖象關(guān)于點(diǎn)(,0)對稱

試題詳情

       C.奇函數(shù)且它的圖象關(guān)于點(diǎn)(,0)對稱

       D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱

 

 

試題詳情

6.橢圓與直線交于A、B兩點(diǎn),過原點(diǎn)與線段AB中點(diǎn)的直線的斜

試題詳情

   率為,則的值為                                                                                      (    )

試題詳情

       A.                 B.                 C.                   D.

試題詳情

7.二元函數(shù)的定義域記為,則函數(shù)=[xlin(y-x)]

   的定義域D所表示的平面區(qū)域?yàn)?nbsp;                                                                      (    )

試題詳情

 

 

 

 

 

 

試題詳情

8.定義域?yàn)镽的函數(shù)滿足f(-4-x)=f(x+8),且y=f(x+8)為偶函數(shù),則(    )

       A.是周期為4的周期函數(shù)                      B.是周期為8的周期函數(shù)

       C.是周期為12的周期函數(shù)                    D.不是周期函數(shù)

試題詳情

9.在正方體上任意選擇兩條棱,則這兩條棱所在直線成異面直線的概率為            (    )

試題詳情

       A.                    B.                     C.                   D.

試題詳情

10.如圖,△ABC與△ABD分別是等腰直角三角形與

試題詳情

       正三角形,當(dāng)BC與平面ABD所成的角是arcsin

       時(shí),銳二面角C―AB―D等于                 (    )

試題詳情

       A.                                                     B.

試題詳情

       C.                                                     D.

 

 

 

 

 

試題詳情

11.(理)拋擲兩個(gè)骰子,至少有一個(gè)4點(diǎn)或5點(diǎn)出現(xiàn)時(shí),就這這些試驗(yàn)成功,則在10次試

試題詳情

       驗(yàn)中,成功次數(shù)的期望是                                                                             (    )

試題詳情

       A.                    B.                    C.                    D.

試題詳情

   (文)某路段監(jiān)察站監(jiān)控錄像顯示,在某時(shí)段內(nèi),有

       1000輛汽車通過該站,現(xiàn)在隨機(jī)抽取其中的200輛

       汽車進(jìn)行車速分析,分析的結(jié)果表示為如右圖的頻

       率分布直方圖,則估計(jì)在這一時(shí)段內(nèi)通過該站的汽

       車中速度不小于90kn/h的約有               (    )

       A.400輛                                               B.300輛

       C.200輛                                               D.100輛

試題詳情

12.雙曲線的左右焦點(diǎn)分別為F1F2,點(diǎn)Pn(xn,yn)(n=1,2,3)在其右支

試題詳情

       上,且滿足,則x2009的值是                       (    )

試題詳情

       A.4017           B.4018            C.4017                 D.4018

試題詳情

二、填空題(本大題共4小題,每小題4分,共16分,把答案填在題中橫線上)

13.已知的展開式中項(xiàng)的系數(shù)為3,則實(shí)數(shù)a的值為         

試題詳情

14.一個(gè)正方體表面展開圖中,五個(gè)

       正方形的位置如圖陰影所示,第

       六個(gè)正方形在編號1到5的位置,

       則所有可能位置的編號是      。

試題詳情

15.若正整數(shù)n使得作豎式加法:n+(n+1)+(n+2)時(shí)均不產(chǎn)生進(jìn)位現(xiàn)象,則稱n為“連

       綿數(shù)”,如12是連綿數(shù),因?yàn)?2+13+14不產(chǎn)生進(jìn)位現(xiàn)象,但13不是連綿數(shù),那么小于

       1000的連綿數(shù)的個(gè)數(shù)為          (用數(shù)字回答);

試題詳情

16.給出下列五個(gè)命題:

試題詳情

       ① 不等式x2-4ax+3a2<0的階級為{x|a<x<3a;

       ② 若函數(shù)y=f(x+1)為偶函數(shù),則y=f(x)的圖像關(guān)于x=1對稱;

       ③ 若不等式|x-4|+|x-3|≤a的解集不為空集,則有a≥1;

       ④ 函數(shù)y=f(x)的圖像與直線x=a至多有一個(gè)交點(diǎn);

       ⑤若角α,β滿足cosα?cosβ=1,則sin(α+β)=0。

       其中錯(cuò)誤命題的序號是            。

 

 

試題詳情

三、解答題(本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟)

17.(本題12分)

試題詳情

       已知函數(shù)的圖象按向量平移得到函數(shù)

試題詳情

       的圖象。

   (1)求實(shí)數(shù)a,b的值。

試題詳情

   (2)設(shè)函數(shù),求函數(shù)的單調(diào)增區(qū)間。

 

 

 

 

 

 

 

 

試題詳情

18.(本題12分)

   (理)現(xiàn)有A、B、C、D四個(gè)城市,它們各有一個(gè)著名的旅游景點(diǎn),依次記為a、b、c、

20090422

       條線把左、右全部連接起來,構(gòu)成“一一對應(yīng)”,已知連對的得2分,連錯(cuò)的得0分

   (1)求該愛好者得分的分布列;

   (2)求所得分的數(shù)學(xué)期望

   (文)現(xiàn)有A、B、C、D、E共5個(gè)口袋,每個(gè)口袋裝有大小和質(zhì)量均相同的4個(gè)紅球和

       2個(gè)黑球,現(xiàn)每次從其中一個(gè)口袋中摸出3個(gè)球,規(guī)定:若摸出的3個(gè)球恰為2個(gè)紅球

       和1個(gè)黑球,則稱為最佳摸球組合。

   (1)求從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合的概率;

   (2)現(xiàn)從每個(gè)口袋中摸出3個(gè)球,求恰有3個(gè)口袋中摸出的球是最佳摸球組合的概率。

 

 

 

 

 

 

 

 

 

 

試題詳情

19.(本題12分)

       如圖,在長方體ABCD―A1B1C1D1中,E、P分別是BC、A1D1的中點(diǎn),M、N分別是

       AE、CD1的中點(diǎn),AD=AA1=a,AB=2a。

   (1)求證MN∥ADD1A1;

試題詳情

   (2)求二面角P―AE―D的大;

   (3)求三棱錐P―DEN的體積。

 

 

 

 

 

 

試題詳情

20.(本題12分)

試題詳情

   (理)已知函數(shù)

試題詳情

   (1)若a=-2e時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

試題詳情

   (2)若函數(shù)=+在[1,4]是上減函數(shù),求實(shí)數(shù)a的取值范圍。

試題詳情

   (文)已知函數(shù)=在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間上單調(diào)

       遞減,

   (1)求a的值;

試題詳情

   (2)若點(diǎn)A(x0,f(x0))在函數(shù)的圖象上,求證:點(diǎn)A關(guān)于直線x=1的對稱點(diǎn)B

試題詳情

        也在函數(shù)的圖象上;

試題詳情

   (3)是否存在實(shí)數(shù)b,使得函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)交點(diǎn),

        若存在,請求出實(shí)數(shù)b的值;若不存在,試說明理由。

 

 

 

 

 

 

 

 

試題詳情

21.(本題12分)

試題詳情

   (理)已知正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn,且

   (1)求數(shù)列{an}的通項(xiàng)公式;

試題詳情

   (2)若bn=2n?an,且數(shù)列{bn}的前n項(xiàng)和為Tn,求

試題詳情

   (文)已知正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn,且

   (1)求數(shù)列{an}的通項(xiàng)公式;

20090422

 

 

 

 

 

 

試題詳情

22.(本題14分)

試題詳情

       已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ

試題詳情

       上,且,點(diǎn)M的軌跡為C。

   (1)求曲線C的方程;

試題詳情

   (2)過點(diǎn)D(0,-2)作直線l與曲線交于A、B兩點(diǎn),設(shè)N是過點(diǎn)(0,)且平行

試題詳情

        于x軸的直線上一動(dòng)點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直

        線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在請說明理

        由。

 

 

 

 

 

 

 

 

 

試題詳情

 

一、選擇題(本大題共12小題,每題5分,共60分)

1.A    2.B    3.C    4.A    5.D    6.C    7.B    8.C    9.A

10.B   11.(理)C(文)B       12.D

二、填空題(本大題共4小題,每題4分,共16分)

13.                           14.②③                 15.47                    16.□

三、解答題(本大題共6小題,共計(jì)76分)

17.解:

   (1)依題意函數(shù)的圖象按向量平移后得

                                                ………………………2分

       即=                                                ………………………4分

       又

       比較得a=1,b=0                                                                  ………………………6分

   (2)

       =                                                             ………………………9分

      

      

       ∴的單調(diào)增區(qū)間為[,]          ……………………12分

18.解:

   (1)設(shè)連對的個(gè)數(shù)為y,得分為x

       因?yàn)閥=0,1,2,4,所以x=0,2,4,8.

      

x

0

2

4

8

   

       于是x的分布列為

            ……9分

             

             

               (2)Ex=0×+2×+4×+8×=2

                   即該人得分的期望為2分。                                                     ……………………12分

               (文)

               (1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和一個(gè)黑球

                   其概念為                                                     ……………………6分

               (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5

                   次獨(dú)立重復(fù)試驗(yàn),故所求概率為………………………12分

            19.解法一:以D為原點(diǎn),DA,DC,DD1

                   所在直線分別為x軸、y軸、z軸,建

                   立空間直角坐標(biāo)系D―xyz,則

                   A(a,0,0)、B(a,2a,0)、

                   C(0,2a,0)、A1(a,0,a)、

                   D1(0,0,a)。E、P分別是BC、A1D1

                   的中點(diǎn),M、N分別是AE、CD1的中點(diǎn)

                   ∴……………………………………2分

               (1)⊥面ADD1A1

                   而=0,∴,又∵M(jìn)N面ADD1A1,∴MN∥面ADD1A1;………4分

               (2)設(shè)面PAE的法向量為,又

                   則又

                   ∴=(4,1,2),又你ABCD的一個(gè)法向量為=(0,0,1)

                   ∴

                   所以二面角P―AE―D的大小為                        ………………………8分

               (3)設(shè)為平面DEN的法向量,

                   又=(),=(0,a,),,0,a)

                   ∴所以面DEN的一個(gè)法向量=(4,-1,2)

                   ∵P點(diǎn)到平面DEN的距離為

                   ∴

                  

                   所以                                              ……………………12分

                   解法二:

               (1)證明:取CD的中點(diǎn)為K,連接

                   ∵M(jìn),N,K分別為AE,CD1,CD的中點(diǎn)

                   ∴MK∥AD,ND∥DD1,∴MK∥面ADD1A1,NK∥面ADD1A1

                   ∴面MNK∥面ADD1A1,∴MN∥面ADD1A1,                     ………………………4分

               (2)設(shè)F為AD的中點(diǎn),∵P為A1D1的中點(diǎn)

                   ∴PF∥DD1,PF⊥面ABCD

                   作FH⊥AE,交AE于H,連結(jié)PH,則由三垂

                   線定理得AE⊥PH,從而∠PHF為二面角

                   P―AE―D的平面角。

                   在Rt△AAEF中,AF=,EF=2,AE=,

                   從而FH=

                   在Rt△PFH中,tan∠PHF=

                   故:二面角P―AE―D的大小為arctan

               (3)

                   作DQ⊥CD1,交CD1于Q,

                   由A1D1⊥面CDD1C1,得A1D1⊥DQ,∴DQ⊥面BCD1A1。

                   在Rt△CDD1中,

                   ∴  ……………………12分

            20.解:(理)

               (1)函數(shù)的定義域?yàn)椋?,+

                   當(dāng)a=-2e時(shí),            ……………………2分

                   當(dāng)x變化時(shí),,的變化情況如下:

            (0,

            ,+

            0

            極小值

                   由上表可知,函數(shù)的單調(diào)遞減區(qū)間為(0,

                   單調(diào)遞增區(qū)間為(,+

                   極小值是)=0                                                           ……………………6分

               (2)由           ……………………7分

                   又函數(shù)為[1,4]上單調(diào)減函數(shù),

                   則在[1,4]上恒成立,所以不等式在[1,4]上恒成立。

                   即在,[1,4]上恒成立                                           ……………………10分

                   又=在[1,4]上為減函數(shù)

                   ∴的最小值為

                   ∴                                                                            ……………………12分

               (文)(1)∵函數(shù)在[0,1]上單調(diào)遞增,在區(qū)間上單調(diào)遞

                   減,

                   ∴x=1時(shí),取得極大值,

                   ∴

                   ∴4-12+2a=0a=4                                                                                      ………………………4分

               (2)A(x0,f(x0))關(guān)于直線x=1的對稱點(diǎn)B的坐標(biāo)為(2- x0,f(x0

                  

                   =

                   ∴A關(guān)于直線x=1的對稱點(diǎn)B也在函數(shù)的圖象上            …………………8分

               (3)函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)交點(diǎn),等價(jià)于方程

                   恰有3個(gè)不等實(shí)根,

                  

                   ∵x=0是其中一個(gè)根,

                   ∴方程有兩個(gè)非零不等實(shí)根

                                                   ……………………12分

            21.解:(理)(1)由已知得:

                          

                   ∵                                                     ①…………………2分

                   ∴                                                                 ②

                   ②―①

                   即

                   又

                   ∴                                                                      ……………………5分

                   ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

               (2)∵

                   ∴

                   ∴                   …………………8分

                   兩式相減

                  

                   ∴                                                          ……………………10分

                   ∴               ……………………12分

               (文)(1)由已知得:

                  

                   ∴

                   ∵                                                     ①…………………2分

                   ∴                                                                 ②

                   ②―①

                   即

                   又

                   ∴                                                                      ……………………5分

                   ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

               (2)∵

                   ∴

                   ∴                   …………………8分

                   兩式相減

                  

                   ∴                                                          ……………………10分

                   ∴               ……………………12分

            22.解:(1)

                   設(shè)M(x,y)是曲線C上任一點(diǎn),因?yàn)镻M⊥x軸,

                   所以點(diǎn)P的坐標(biāo)為(x,3y)                                                  …………………2分

                   點(diǎn)P在橢圓,所以

                   因此曲線C的方程是                                           …………………5分

               (2)當(dāng)直線l的斜率不存在時(shí),顯然不滿足條件

                   所以設(shè)直線l的方程為與橢圓交于Ax1,y1),Bx2,y2),N點(diǎn)所在直線方

                   程為

                   ,由

                                                           ……………………6分

                   由△=………………8分

                   ∵,所以四邊形OANB為平行四邊形              …………………9分

                   假設(shè)存在矩形OANB,則

                  

                  

                   所以

                   即                                                                   ……………………11分

                   設(shè)N(),由,得

                   ,

                   即N點(diǎn)在直線

                   所以存在四邊形OANB為矩形,直線l的方程為 ……………………14分

             

             

             


            同步練習(xí)冊答案