[解析](1)記表示第行第列的項.由已知知第1行是等差數(shù)列, 查看更多

 

題目列表(包括答案和解析)

近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱。為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):

 

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)試估計廚余垃圾投放正確的概率

(Ⅱ)試估計生活垃圾投放錯誤的概率

(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當數(shù)據(jù)a,b,c,的方差最大時,寫出a,b,c的值(結(jié)論不要求證明),并求此時的值。

(注:,其中為數(shù)據(jù)的平均數(shù))

【解析】(1)廚余垃圾投放正確的概率約為

(2)設(shè)生活垃圾投放錯誤為事件A,則事件表示生活垃圾投放正確。事件的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即約為,所以約為

(3)當時,方差取得最大值,因為

所以

 

查看答案和解析>>

近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱。為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):

 

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)試估計廚余垃圾投放正確的概率

(Ⅱ)試估計生活垃圾投放錯誤的概率

(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當數(shù)據(jù)a,b,c,的方差最大時,寫出a,b,c的值(結(jié)論不要求證明),并求此時的值。

(注:,其中為數(shù)據(jù)的平均數(shù))

【解析】(1)廚余垃圾投放正確的概率約為

(2)設(shè)生活垃圾投放錯誤為事件A,則事件表示生活垃圾投放正確。事件的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即約為,所以約為

(3)當時,方差取得最大值,因為,

所以

 

查看答案和解析>>

已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)記,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學歸納法)

①  當n=1時,,,故等式成立.

②  假設(shè)當n=k時等式成立,即,則當n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意成立.

 

查看答案和解析>>

設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設(shè)數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因為,

所以

(2)  不妨設(shè).由題意得.又因為,所以,

于是,,

    

所以,當,且時,取得最大值1。

(3)對于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設(shè),

。

得定義知,,

又因為

所以

     

     

所以,

對數(shù)表

1

1

1

-1

-1

 

,

綜上,對于所有的,的最大值為

 

查看答案和解析>>

某上市股票在30天內(nèi)每股的交易價格(元)與時間(天)所組成的有序數(shù)對落在下圖中的兩條線段上,該股票在30天內(nèi)的日交易量(萬股)與時間(天)的部分數(shù)據(jù)如下表所示.

 

第t天

4

10

16

22

Q(萬股)

36

30

24

18

 

 

 

⑴根據(jù)提供的圖象,寫出該種股票每股交易價格(元)與時間(天)所滿足的函數(shù)關(guān)系式;

⑵根據(jù)表中數(shù)據(jù)確定日交易量(萬股)與時間(天)的一次函數(shù)關(guān)系式;

⑶在(2)的結(jié)論下,用(萬元)表示該股票日交易額,寫出關(guān)于的函數(shù)關(guān)系式,并求這30天中第幾天日交易額最大,最大值為多少?

【解析】(1)根據(jù)圖象可知此函數(shù)為分段函數(shù),在(0,20]和(20,30]兩個區(qū)間利用待定系數(shù)法分別求出一次函數(shù)關(guān)系式聯(lián)立可得P的解析式;

(2)因為Q與t成一次函數(shù)關(guān)系,根據(jù)表格中的數(shù)據(jù),取出兩組即可確定出Q的解析式;

(3)根據(jù)股票日交易額=交易量×每股較易價格可知y=PQ,可得y的解析式,分別在各段上利用二次函數(shù)求最值的方法求出即可.

 

查看答案和解析>>


同步練習冊答案