題目列表(包括答案和解析)
已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點.
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點,且過點A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.
已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點.
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點,且過點A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.
如果方程表示一個圓,
(1)求的取值范圍;
(2)當(dāng)m=0時的圓與直線相交,求直線的傾斜角的取值范圍.
一.選擇
1. 選B 滿足f[f(x)]=x有2個 ①1→1,2→2 ②1→2,2→1
2. 選C 只需注意
3. 選C 當(dāng)時
4. 選D 分組(1),(2,2),(3,3,3),(4,4,4,4)……
前13組共用去1+2+……+13=個數(shù),而第14組有14個數(shù),
故第100項是在第14組中.
5. 選D 由于0<a<b 有f(a)=f(b) 故0<a<, b>
即 f(a)=2-a2 , f(b)=b2-2
由2-a2= b2-2得到a2+b2=4且a≠b ∴0<ab<2
6.選B 由已知 ∴ ∴.
7.選D 由.
8.選C 設(shè)正方體的邊長為a,當(dāng)截面為菱形,即過相對棱(如AA1及CC1)時,
面積最小, 此時截面為邊長,兩對角線分別為和的菱形,
此時,當(dāng)截面過兩相對棱(如BC及A1D1)時截面積最大,
此時 ∴
|