22.本題共有3小題.第1小題滿分4分.第2小題滿分6分.第3小題滿分8分. 查看更多

 

題目列表(包括答案和解析)

(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分。

已知是公差為的等差數(shù)列,是公比為的等比數(shù)列。

(1)       若,是否存在,有說明理由;    

(2)       找出所有數(shù)列,使對一切,,并說明理由;

(3)       若試確定所有的,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明。

查看答案和解析>>

(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分.

已知是公差為的等差數(shù)列,是公比為的等比數(shù)列.

(1)       若,是否存在,有說明理由;

(2)       找出所有數(shù)列,使對一切,,并說明理由;

(3)       若試確定所有的,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明.

查看答案和解析>>

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,

第3小題滿分8分.

已知數(shù)列,,是正整數(shù)),與數(shù)列,,,,是正整數(shù)).記

(1)若,求的值;

(2)求證:當是正整數(shù)時,

(3)已知,且存在正整數(shù),使得在,,中有4項為100.

的值,并指出哪4項為100.

查看答案和解析>>

(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分。

 已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列。

(1)若,是否存在,有?請說明理由;

(2)若aq為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

(3)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明。

查看答案和解析>>

 (本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

在數(shù)列中,

(1)設,證明:數(shù)列是等差數(shù)列;

(2)設數(shù)列的前項和為,求的值;

(3)設,數(shù)列的前項和為,,是否存在實數(shù),使得對任意的正整數(shù)和實數(shù),都有成立?請說明理由.

查看答案和解析>>

一、填空題:中國數(shù)學論壇網(wǎng) http://www.mathbbs.cn 2008年03月18日正在開通

1.2   2.4   3.3   4.   5.12   6.―2   7.   8.   9.18

      2,4,6

      二、選擇題:

      13.C   14.D   15.A   16.B

      三、解答題:

      17.解:設的定義域為D,值域為A

          由                                                         …………2分

                              …………4分

          又                                                    …………6分

                                                                …………8分

          的定義域D不是值域A的子集

          不屬于集合M                                                             …………12分

      18.解:(1)VC―PAB=VP―ABC

                                            …………5分

         (2)取AB中點D,連結CD、PD

          ∵△ABC是正三角形 ∴CD⊥AB

      PA⊥底面ABC,∴CD⊥AP,∴CD⊥平面PAB

      ∠CPD是PC與平面PAB所成的角                                          …………8分

                                                               …………11分

      ∴PC與平面PAB所成角的大小為                          …………12分

      19.解:(1)                                             …………2分

                                   …………4分

                     …………6分

         (2)設                                        …………8分

        …………10分

      (m2)      …………12分

      答:當(m2)   …………14分

      20.解:(1)=3

                                                                      …………2分

      設圓心到直線l的距離為d,則

      即直線l與圓C相離                                                   …………6分

         (2)由  …………8分

      由條件可知,                                        …………10分

      又∵向量的夾角的取值范圍是[0,π]

                                                                 …………12分

                                                             …………14分

      21.解:(1)                       …………2分

                      …………4分

         (2)由

                                  …………6分

                                                                                    …………9分

         是等差數(shù)列                                                        …………10分

         (3)

         

                               …………13分

                         …………16分

      22.解:(1)∵直線L過橢圓C右焦點F

                                                         …………2分

          即

          ∴橢圓C方程為                                                  …………4分

         (2)記上任一點

         

          記P到直線G距離為d

          則                                                   …………6分

         

                                                                   …………10分

         (3)直線L與y軸交于、    …………12分

          由

                                                                              …………14分

          又由

               同理                                                        …………16分

         

                                                                              …………18分

       

       


      同步練習冊答案