4.已知直線與橢圓總有交點.則m的取值范圍為 查看更多

 

題目列表(包括答案和解析)

(理)已知直線y=kx+1(k∈R)與橢圓+=1總有交點,則m的取值范圍為( )
A.(1,2]
B.[1,2)
C.[1,2)∪[2,+∞)
D.(2,+∞)

查看答案和解析>>

(理)已知直線y=kx+1(k∈R)與橢圓+=1總有交點,則m的取值范圍為( )
A.(1,2]
B.[1,2)
C.[1,2)∪[2,+∞)
D.(2,+∞)

查看答案和解析>>

(理)已知直線y=kx+1(k∈R)與橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1總有交點,則m的取值范圍為


  1. A.
    (1,2]
  2. B.
    [1,2)
  3. C.
    [1,2)∪[2,+∞)
  4. D.
    (2,+∞)

查看答案和解析>>

(理)已知直線y=kx+1(k∈R)與橢圓
x2
2
+
y2
m
=1總有交點,則m的取值范圍為( 。
A、(1,2]
B、[1,2)
C、[1,2)∪[2,+∞)
D、(2,+∞)

查看答案和解析>>

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點.

然后設(shè)點,的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點,的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

1.B       2.C       3.B       4.C       5.B       6.B       7.C      8.B       9.C       10.B  學(xué)科網(wǎng)(Zxxk.Com)

11.C     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

3.當(dāng)時,函數(shù)上,恒成立即上恒成立,可得學(xué)科網(wǎng)(Zxxk.Com)

       當(dāng)時,函數(shù)上,恒成立學(xué)科網(wǎng)(Zxxk.Com)

上恒成立學(xué)科網(wǎng)(Zxxk.Com)

可得,對于任意恒成立學(xué)科網(wǎng)(Zxxk.Com)

所以,綜上得學(xué)科網(wǎng)(Zxxk.Com)

4.解法一:聯(lián)立,得學(xué)科網(wǎng)(Zxxk.Com)

方程總有解,需恒成立學(xué)科網(wǎng)(Zxxk.Com)

恒成立,得恒成立學(xué)科網(wǎng)(Zxxk.Com)

       ;又學(xué)科網(wǎng)(Zxxk.Com)

的取值范圍為學(xué)科網(wǎng)(Zxxk.Com)

解法二:數(shù)形結(jié)合,因為直線恒過定點(0,1),要使直線與橢圓總有交點當(dāng)日僅當(dāng)點(0,1)在橢圓上或橢圓內(nèi),即學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

       的取值范圍為學(xué)科網(wǎng)(Zxxk.Com)

5.學(xué)科網(wǎng)(Zxxk.Com)

7.展開式前三項的系數(shù)滿足可解得,或(舍去).從而可知有理項為,故C正確.學(xué)科網(wǎng)(Zxxk.Com)

8.,欲使為奇函數(shù),須使,觀察可知,不符合要求,若,則,其在上是減函數(shù),故B正確

當(dāng)時,,其在上是增函數(shù),不符合要求.

9.等價于

      

畫圖可知,故

10.如圖乙所示.設(shè),點到直線的距離為,則由拋物線定義得

又由點在橢圓上,及橢圓第一定義得

由橢圓第二定義得,解之得

11.從52張牌中任意取13張牌的全部取法為;缺少某一種花色的取法為,缺少兩種花色的取法為,缺少三種花色的取法為,根據(jù)容斥原理可知四種花色齊全的取法為

12.設(shè)中點為,連.由已知得平面,作,交的延長線于點,連.則為所求,設(shè),則,在

中可求出,則

二、填空題

13.

提示:可以用換元法,原不等式為也可以用數(shù)形結(jié)合法.

,在同一坐標(biāo)系內(nèi)分別畫出這兩個函數(shù)的圖象,由圖直觀得解集.

14.12.提示:經(jīng)判斷,為截面團的直徑,再由巳知可求出球的半徑為

15..提示:由于

解得,又

所以,當(dāng)時,取得最小值.

16.①②④

三、解答題

17.懈:

,由正弦定理得,

,

,化簡得

為等邊三角形.

說明;本題是向量和三角相結(jié)合的題目,既考查了向量的基本知識,又考查了三角的有關(guān)知識,三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.

18.解:(1)在第一次更換燈泡工作中,不需要更換燈泡的概率為需要更換2只燈泡的概率為

       (2)對該盞燈來說,在第1、2次都更換了燈泡的概率為,在第一次未更換燈泡而在第二次需要更換燈泡的概率為,故所求的概率為

       (3)當(dāng)時,

              由(2)知第二次燈泡更換工作中,某盞燈更換的概率

              故至少換4只燈泡的概率為

19.解:]

              因為函數(shù)處的切線斜率為

              所以

              即                                           ①

              又

              得                                      ②

       (1)函數(shù)時有極值

                                    ③

              解式①②③得

              所以

       (2)因為函數(shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間的值恒大于或等于零.

              則

              得,所以實數(shù)的取值范圍為

20.解:(1)連接因為平面,平面平面

所以;又的中點,故的中點

              底面

              與底面所成的角

              在中,

學(xué)科網(wǎng)(Zxxk.Com)              所以與底面所成的角為45°.

(2)解法一;如圖建立直角坐標(biāo)系

       則, 

                       設(shè)點的坐標(biāo)為

              故   

             

             

              的坐標(biāo)為

             

              故

       解法二:平面

              ,又

              平面

在正方形中,

21.解:(1)設(shè)點、的坐標(biāo)分別為,點的坐標(biāo)為

當(dāng)時,設(shè)直線的斜率為

直線過點

的方程為

又已知                                               ①

                                                           ②

                                                        ③

                                                ④

∴式①一式②得

          ⑤

③式+式④得

                             ⑥

              ∴由式⑤、式⑥及

              得點的坐標(biāo)滿足方程

                                        ⑦

當(dāng)時,不存在,此時平行于軸,因此的中點一定落在軸上,即的坐標(biāo)為,顯然點,0)滿足方程⑦

綜上,點的坐標(biāo)滿足方程

設(shè)方程⑦所表示的曲線為

則由,

因為,又已知

所以當(dāng)時. ,曲線與橢圓有且只有一個交點,

當(dāng)時,,曲線與橢圓沒有交點,因為(0,0)在橢圓內(nèi),又在曲線上,所以曲線在橢圓內(nèi),故點的軌跡方程為

(2)由解得曲線軸交于點(0,0),(0,

解得曲線軸交于點(0,0).(,0)

當(dāng),即點為原點時,(,0)、(0,)與(0.0)重合,曲線與坐標(biāo)軸只有一個交點(0,0).

當(dāng),且,即點不在橢圓外且在除去原點的軸上時,曲線與坐標(biāo)軸有兩個交點(0,)與(0,0),同理,當(dāng)時,曲線與坐標(biāo)軸有兩個交點(,o)、(0,0).

當(dāng),且時,即點不在橢圓且不在坐標(biāo)軸上時,曲線與坐標(biāo)軸有三個交點(,0)、(0,)與(0,0).

22.(1)解:,又

              是以首項為,公比為的等比數(shù)列.

             

       (2)證明:設(shè)數(shù)列的公比為,則條件等式可化為:

數(shù)列為等差數(shù)列,

       (3)證明:由題意知

                                                     ①

              式①

                                                ②

              式①-式②得

             

             

             

             

www.ks5u.com

 

 


同步練習(xí)冊答案