已知.求為何值時.函數(shù)取得最小值.并求出該最小值. 查看更多

 

題目列表(包括答案和解析)

已知a≥0,函數(shù)f(x)=(x2-2ax)ex
(Ⅰ)當x為何值時,f(x)取得最小值?證明你的結(jié)論;
(Ⅱ)設(shè)f(x)在[-1,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

已知二次函數(shù)y=g(x)的導函數(shù)的圖象與直線y=2x平行,且y=g(x)在x=-1處取得極小值m-1(m≠0).設(shè)f(x)=
g(x)
x

(1)若曲線y=f(x)上的點P到點Q(0,2)的距離的最小值為
2
,求m的值;
(2)k(k∈R)如何取值時,函數(shù)y=f(x)-kx存在零點,并求出零點.

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求實數(shù)a的取值范圍;
(2)對于給定的實數(shù)a,有一個最小的負數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立,則當a為何值時,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知f(x)=x|x-a|+2x-3
(Ⅰ)當a=4,2≤x≤5時,問x分別取何值時,函數(shù)f(x)取得最大值和最小值,并求出相應(yīng)的最大值和最小值;
(Ⅱ)若f(x)在R上恒為增函數(shù),試求a的取值范圍;
(Ⅲ)已知常數(shù)a=4,數(shù)列{an}滿足an+1=
f(an)+3an
(n∈N+)
,試探求a1的值,使得數(shù)列{an}(n∈N+)成等差數(shù)列.

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)(理)對于給定的非零實數(shù)a,求最小的負數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立;
(Ⅲ)(理)在(Ⅱ)的條件下,當a為何值時,M(a)最小,并求出M(a)的最小值.
(Ⅱ)(文)求最小的實數(shù)b,使得x∈[b,1]時,f(x)≥-2都成立;
(Ⅲ)(文)若存在實數(shù)a,使得x∈[b,1]時,-2≤f(x)≤3b都成立,求實數(shù)b的取值范圍.

查看答案和解析>>

一、選擇題(4′×10=40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

   作根軸圖:

 

 

 

                                                      ………………………4′

  

可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

   則的方程為: ………………………4′

為所求………………………6′

16.解:∵  則,………………………1′

∴有………………………3′

        ………………………4′

     ………………………5′

     

當且僅當:………………………5′

       亦:時取等號

所以:當時,………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………6′

由弦長公式得:………………………8′

18.解①設(shè)雙曲線的實半軸,虛半軸分別為,

則有:   ∴………………………1′

于是可設(shè)雙曲線方程為:  ①或 ②………………………3′

將點代入①求得:

將點代入②求得: (舍去) ………………………4′

,

∴雙曲線的方程為:………………………5′

②由①解得:,,,焦點在軸上………………………6′

∴雙曲線的準線方程為:………………………7′

漸近線方程為: ………………………8′

19.解:①設(shè)為橢圓的半焦距,則,

   ∵  ∴  ∴………………………1′

代入,可求得

  ∵  ∴

  又、………………………3′

,

………………………5′

從而

∴離心率………………………6′

②由拋物線的通徑

得拋物線方程為,其焦點為………………………7′

∴橢圓的左焦點

由①解得:

………………………8′

∴該橢圓方程為:………………………9′

③      

 

 


同步練習冊答案