題目列表(包括答案和解析)
如圖是單位圓
上的點,
分別是圓
與
軸的兩交點,
為正三角形.
(1)若點坐標(biāo)為
,求
的值;
(2)若,四邊形
的周長為
,試將
表示成
的函數(shù),并求出
的最大值.
【解析】第一問利用設(shè)
∵ A點坐標(biāo)為∴
,
(2)中 由條件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴
,
∴ 當(dāng)時,即
當(dāng)
時 , y有最大值5. .
已知△的內(nèi)角
所對的邊分別為
且
.
(1)
若, 求
的值;
(2)
若△的面積
求
的值.
【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運算求解能力。第一問中,得到正弦值
,再結(jié)合正弦定理可知,
,得到
(2)中
即
所以c=5,再利用余弦定理
,得到b的值。
解: (1)∵, 且
, ∴
. 由正弦定理得
, ∴
.
(2)∵ ∴
. ∴c=5
由余弦定理得,
∴
在中,
,分別是角
所對邊的長,
,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵
∴
∴
的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴
解:(1) ………………2分
又∵∴
……………………4分
∴的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得: ∴
又
∴
已知向量=(
),
=(
,
),其中(
).函數(shù)
,其圖象的一條對稱軸為
.
(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=
,求a的值.
【解析】第一問利用向量的數(shù)量積公式表示出,然后利用
得到
,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。
解:因為
由余弦定理得,……11分故
給出問題:已知滿足
,試判定
的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為
.由正弦定理可得,原式等價于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果. .
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com