題目列表(包括答案和解析)
(1)求數(shù)列{an}的首項(xiàng)a1和公比q;
(2)對(duì)給定的k(k=1,2,…,n),設(shè)T(k)是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列,求數(shù)列T(2)的前10項(xiàng)之和;
(3)設(shè)bi為數(shù)列T(i)的第i項(xiàng),Sn=b1+b2+…+bn,求Sn,并求正整數(shù)m(m>1),使得存在且不等于零.
(注:無(wú)窮等比數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)該無(wú)窮等比數(shù)列前n項(xiàng)和的極限)
已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時(shí),,,故等式成立.
② 假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:
即,因此n=k+1時(shí)等式也成立
由①和②,可知對(duì)任意,成立.
1 |
a2n |
1 |
3 |
1 |
a2n |
1 |
3 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com