題目列表(包括答案和解析)
已知命題及其證明:
(1)當(dāng)時(shí),左邊=1,右邊=所以等式成立;
(2)假設(shè)時(shí)等式成立,即成立,
則當(dāng)時(shí),,所以時(shí)等式也成立。
由(1)(2)知,對(duì)任意的正整數(shù)n等式都成立。
經(jīng)判斷以上評(píng)述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
試判斷下面的證明過(guò)程是否正確:
用數(shù)學(xué)歸納法證明:
證明:(1)當(dāng)時(shí),左邊=1,右邊=1
∴當(dāng)時(shí)命題成立.
(2)假設(shè)當(dāng)時(shí)命題成立,即
則當(dāng)時(shí),需證
由于左端等式是一個(gè)以1為首項(xiàng),公差為3,項(xiàng)數(shù)為的等差數(shù)列的前項(xiàng)和,其和為
∴式成立,即時(shí),命題成立.根據(jù)(1)(2)可知,對(duì)一切,命題成立.
試判斷下面的證明過(guò)程是否正確:
用數(shù)學(xué)歸納法證明:
證明:(1)當(dāng)時(shí),左邊=1,右邊=1
∴當(dāng)時(shí)命題成立.
(2)假設(shè)當(dāng)時(shí)命題成立,即
則當(dāng)時(shí),需證
由于左端等式是一個(gè)以1為首項(xiàng),公差為3,項(xiàng)數(shù)為的等差數(shù)列的前項(xiàng)和,其和為
∴式成立,即時(shí),命題成立.根據(jù)(1)(2)可知,對(duì)一切,命題成立.
[ ]
已知數(shù)列的前項(xiàng)和為,且 (N*),其中.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時(shí),由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對(duì)偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;
②假設(shè)時(shí),命題成立,即,
則當(dāng)時(shí),
即
即
故當(dāng)時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com