20. 在四棱錐P―ABCD中.PA⊥平面ABCD.底面ABCD為正方形.E.F分別為BC.PD的中點.PA=AB. (I)求證:EF//平面PAB, (II)[理科]求直線EF與平面PCD所成的角.[文科]求直線EF與平面PAD所成的角. 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)

在四棱錐P-ABCD中,

平面ABCD,E為PD的中點,PA=2,AB=1.

(1)求四棱錐P-ABCD的體積V;

(2)若F為PC的中點,求證:

    平面PAC平面AEF.

查看答案和解析>>

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

⑴求異面直線PD與AE所成角的大;
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大。.

查看答案和解析>>

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

 ⑴求異面直線PD與AE所成角的大;

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大小..

 

 

查看答案和解析>>

(本題滿分12分)

如圖,正四棱錐S-ABCD 的底面是邊長為正方形,為底面

對角線交點,側(cè)棱長是底面邊長的倍,P為側(cè)棱SD上的點.                 

(Ⅰ)求證:ACSD

(Ⅱ)若SD平面PAC,中點,求證:∥平面PAC;

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點E, 使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,試說明理由。

 

查看答案和解析>>

(本題滿分12分)如圖,在四棱錐P―ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點 

(1)求證  CDPD;

(2)求證  EF∥平面PAD;

(3)當平面PCD與平面ABCD成角時,求證:直線EF⊥平面PCD。

 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.

1.B   2.C   3.【理】C  【文】B    4.A    5.C   6.D

7.C   8.C   9.【理】D   【文】B    10.A   11.B 12.【理】C  【文】D

二、填空題:本大題共4小題,每小題5分,共20分.

13. 2           14.           15.     16.    

三、解答題:本大題共6小題,共70分.

17.(本題滿分10分)

解:.……….2分

   (Ⅰ),

.             ………5分

   (Ⅱ)【理】    ………7分

.              ………10分

【文】        ………8分

 .          ………10分

18.(本題滿分12分)

解:(Ⅰ)甲射擊一次,未擊中目標的概率為,     ………2分

因此,甲射擊兩次,至少擊中目標一次的概率為.       ……...6分

(Ⅱ)設“甲、乙兩人各射擊兩次,甲擊中目標2次,乙未擊中”為事件;“甲、乙兩人各射擊兩次,乙擊中目標2次,甲未擊中”為事件;“甲、乙兩人各射擊兩次,甲、乙各擊中1次”為事件,

;               ………7分

;              ………8分

.          ………9分

因為事件“甲、乙兩人各射擊兩次,共擊中目標2次”為,而彼此互斥,

所以,甲、乙兩人各射擊兩次,共擊中目標2次的概率為

.           ……….12 分     

19.(本題滿分12分))

【理科】解:(Ⅰ)

兩式相減得

從而,           ………3分

,可知..

.

數(shù)列是公比為2,首項為4的等比數(shù)列,           ………5分

因此  ()          ………6分

   (Ⅱ)據(jù)(Ⅰ)

(當且僅當n=5時取等號).                ………10分

恒成立,

因此的最小值是   .    ………12分

   【文科】(Ⅰ)∵等差數(shù)列中,公差,

,                 ………3分

              ………6分

   (Ⅱ)      ,         ………8分

  令,即得,   ………10分

.

      數(shù)列為等差數(shù)列,∴存在一個非零常數(shù),使也為等差數(shù)列.   ………12分

20.(本題滿分12分)

證明(Ⅰ)法1:取中點,連接,

  ∵中點,

平行且等于,

 又∵E為BC的中點,四邊形為正方形,

平行且等于,

∴四邊形為平行四邊形,          ………3分

,又平面平面,

因此,平面.                ………5分

法2:取AD的中點M,連接EM和FM,

∵F、E為PD和BC中點,

,

∴平面,           ………3分

平面

因此,平面.              ………5分

解(Ⅱ)【理科】:連接,連接并延長,交延長線于一點,

連接,則為平面和平面的交線,

,           ………7分

平面,∴,

又∵,

平面,

在等腰直角中,,

平面,

∴平面平面.           ………10分

又平面平面

平面

平面,∴為直線與平面所成的角.

,則,

中,,

因此,直線與平面所成的角.….………………12分

   (Ⅱ)【文科】

    承接法2,,又,

,                         

平面,

∴平面平面.                ………7 分

平面

為直線與平面所成的角.  ………9 分

中,,

=.                   ………12分

21.(本小題滿分12分)

【理科】解:(I)設雙曲線C的焦點為

由已知

,         ……………2分

設雙曲線的漸近線方程為,

依題意,,解得

∴雙曲線的兩條漸近線方程為

故雙曲線的實半軸長與虛半軸長相等,設為,則,得,

∴雙曲線C的方程為             ……………6分.

(II)由

直線與雙曲線左支交于兩點,

因此 ………………..9分

中點為

∴直線的方程為, 

x=0,得

  ∴ 

∴故的取值范圍是.  ………………12分.

   【文科】解:(Ⅰ)由已知

于是……………..6分.

   (Ⅱ)

 

恒成立,

恒成立.      ……………….8分.

,則

上是增函數(shù),在上是減函數(shù),

從而處取得極大值所以的最大值是6,故.………………12分

 

 

22.(本小題滿分12分)

   【理科】解:(Ⅰ) ……………2分

為增函數(shù);

為減函數(shù),

可知有極大值為…………………………..4分

(Ⅱ)欲使上恒成立,只需上恒成立,

由(Ⅰ)知,

……………………8分

(Ⅲ),由上可知上單調(diào)遞增,

  ①,

 同理  ②…………………………..10分

兩式相加得

    ……………………………………12分

【文科】見理科21題答案.

 

 

 

 [y1]Y cy


同步練習冊答案