∵|OP|=|OQ|.∴.得x2+y2=t2+1 ② 查看更多

 

題目列表(包括答案和解析)

已知圓x2+y2+x-6y+m=0與直線x+2y-3=0交于P、Q兩點(diǎn),0為坐標(biāo)原點(diǎn),問是否存在實(shí)數(shù)m,使OP⊥OQ.若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

點(diǎn)P、Q在曲線x2+y2=1(y≥0)上,O是xOy坐標(biāo)系原點(diǎn),P、Q在x軸上的射影是M、N,并且OQ平分∠PON,則(
OM
+
ON
)•(
OP
+
OQ
)
的最小值是( 。

查看答案和解析>>

(2013•濟(jì)南二模)設(shè)P(x1,y1),Q(x2,y2)是拋物線y2=2px(p>0)上相異兩點(diǎn),Q、P到y(tǒng)軸的距離的積為4且
OP
OQ
=0

(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過Q的直線與拋物線的另一交點(diǎn)為R,與x軸交點(diǎn)為T,且Q為線段RT的中點(diǎn),試求弦PR長度的最小值.

查看答案和解析>>

已知點(diǎn)P是圓x2+y2=1上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,設(shè)
OM
=
OP
+
OQ
,則點(diǎn)M的軌跡方程
 

查看答案和解析>>

已知點(diǎn)P是圓O:x2+y2=3上動(dòng)點(diǎn),以點(diǎn)P為切點(diǎn)的切線與x軸相交于點(diǎn)Q,直線OP與直線x=1相交于點(diǎn)N,若動(dòng)點(diǎn)M滿足:
NM
OQ
QM
OQ
=0
,記動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若過點(diǎn)F(2,0)的動(dòng)直線與曲線C相交于不在坐標(biāo)軸上的兩點(diǎn)A,B,設(shè)
AF
FB
,問在x軸上是否存在定點(diǎn)E,使得
OF
⊥(
EA
EB
)
?若存在,求出點(diǎn)E的坐標(biāo),若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案