[例1]求值, 解(1): (2) [例2](1)設(shè) (2) 已知且求 解:(1) 因?yàn)樗? 所以.. 所以 故 (2) 原式= 又所以為第三象限角.所以 ◆思路方法: 1.三角函數(shù)變形著眼于兩點(diǎn):一是尋找角的變換,二是分析函數(shù)式的結(jié)構(gòu)與聯(lián)系.合理利用公式.2.涉及α+β.α及β的正切和差與積.通常用正切公式的變形公式. [例3] 已知α.β.γ∈(0.).sinα+sinγ=sinβ.cosβ+cosγ=cosα.求β-α的值. 解:由已知.得sinγ=sinβ-sinα.cosγ=cosα-cosβ. 平方相加得 (sinβ-sinα)2+(cosα-cosβ)2=1. ∴-2cos(β-α)=-1.∴cos(β-α)=. ∴β-α=±. ∵sinγ=sinβ-sinα>0.∴β>α.∴β-α=. ◆解法點(diǎn)粹:1.求角一般要先求出它的一個(gè)三角函數(shù)值; 查看更多

 

題目列表(包括答案和解析)

已知曲線(xiàn)C:(m∈R)

(1)   若曲線(xiàn)C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線(xiàn)c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線(xiàn)y=kx+4與曲線(xiàn)c交于不同的兩點(diǎn)M、N,直線(xiàn)y=1與直線(xiàn)BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線(xiàn)。

【解析】(1)曲線(xiàn)C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時(shí),曲線(xiàn)C的方程為,點(diǎn)A,B的坐標(biāo)分別為,

,得

因?yàn)橹本€(xiàn)與曲線(xiàn)C交于不同的兩點(diǎn),所以

設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

直線(xiàn)BM的方程為,點(diǎn)G的坐標(biāo)為

因?yàn)橹本€(xiàn)AN和直線(xiàn)AG的斜率分別為

所以

,故A,G,N三點(diǎn)共線(xiàn)。

 

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線(xiàn)的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線(xiàn)y=f(x)的三條切線(xiàn),求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線(xiàn)的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿(mǎn)足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線(xiàn)方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線(xiàn)過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知,是橢圓左右焦點(diǎn),它的離心率,且被直線(xiàn)所截得的線(xiàn)段的中點(diǎn)的橫坐標(biāo)為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是其橢圓上的任意一點(diǎn),當(dāng)為鈍角時(shí),求的取值范圍。

【解析】解:因?yàn)榈谝粏?wèn)中,利用橢圓的性質(zhì)由   所以橢圓方程可設(shè)為:,然后利用

    

      橢圓方程為

第二問(wèn)中,當(dāng)為鈍角時(shí),,    得

所以    得

解:(Ⅰ)由   所以橢圓方程可設(shè)為:

                                       3分

    

      橢圓方程為             3分

(Ⅱ)當(dāng)為鈍角時(shí),,    得   3分

所以    得

 

查看答案和解析>>

已知函數(shù);

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。

【解析】第一問(wèn)中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿(mǎn)足恒成立,得到結(jié)論第二問(wèn)中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來(lái)解答即可。

解:(1),

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿(mǎn)足恒成立,即恒成立,

亦即,

即可  又

當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),

在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實(shí)數(shù)k的取值范圍是

 

查看答案和解析>>

已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿(mǎn)足.

(1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

(2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列,試寫(xiě)出數(shù)列的通項(xiàng)公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿(mǎn)足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)中解:由,,

又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

此時(shí)也滿(mǎn)足,則所求常數(shù)的值為1且

第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:

(i)當(dāng)時(shí),;

(ii) 當(dāng)時(shí),,

所以

第三問(wèn)假設(shè)存在正整數(shù)n滿(mǎn)足條件,則,

則(i)當(dāng)時(shí),

,

 

查看答案和解析>>


同步練習(xí)冊(cè)答案