證明:. .比較與的大小.即比較與的大小. 猜想:(當且僅當時.等號成立) 下面用數(shù)學歸納法加以證明: (1)當時.易證.(略) (2)假設當時.猜想成立.即 當時. (注:) 要證猜想成立.只需證明 即證亦即由易得上式成立.即時.猜想成立. 綜上可知.猜想成立. (另證:令.要證.即證.由二項式定理展開.易得證.) 查看更多

 

題目列表(包括答案和解析)

解答題:解答應寫出文字說明、證明過程或演算步驟

過點P(1,0)作曲線C:y=x2(x∈(0,+∞))的切線,切點為Q1,設點Q1在x軸上的投影為P1(即過點Q1作x軸的垂線,垂足為P1),又過點P1作曲線C的切線,切點為Q2,設點Q2在x軸上的投影為P2,…,依次下去,得到一系列點Q1,Q2,Q3,…,Qn,…,設點Qn的橫坐標為an,n∈N*

(1)

求數(shù)列{an}的通項公式;

(2)

比較an的大小,并證明你的結(jié)論;

(3)

,數(shù)列{bn}的前n項和為Sn,求證:對任意的正整數(shù)n均有≤Sn<2.

查看答案和解析>>

23、課本小結(jié)與復習的參考例題中,給大家分別用“綜合法”,“比較法”和“分析法”證明了不等式:已知a,b,c,d都是實數(shù),且a2+b2=1,c2+d2=1,則|ac+bd|≤1.這就是著名的柯西(Cauchy.法國)不等式當n=2時的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等號當且僅當ad=bc時成立.
請分別用中文語言和數(shù)學語言簡潔地敘述柯西不等式,并用一種方法加以證明.

查看答案和解析>>

課本小結(jié)與復習的參考例題中,給大家分別用“綜合法”,“比較法”和“分析法”證明了不等式:已知a,b,c,d都是實數(shù),且a2+b2=1,c2+d2=1,則|ac+bd|≤1.這就是著名的柯西(Cauchy.法國)不等式當n=2時的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等號當且僅當ad=bc時成立.
請分別用中文語言和數(shù)學語言簡潔地敘述柯西不等式,并用一種方法加以證明.

查看答案和解析>>

課本小結(jié)與復習的參考例題中,給大家分別用“綜合法”,“比較法”和“分析法”證明了不等式:已知a,b,c,d都是實數(shù),且a2+b2=1,c2+d2=1,則|ac+bd|≤1.這就是著名的柯西(Cauchy.法國)不等式當n=2時的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等號當且僅當ad=bc時成立.
請分別用中文語言和數(shù)學語言簡潔地敘述柯西不等式,并用一種方法加以證明.

查看答案和解析>>

已知,(其中

⑴求;

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對等式兩邊求導,得

,則得到結(jié)論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當時,

時,;

時,;

猜想:當時,運用數(shù)學歸納法證明即可。

解:⑴取,則;                         …………1分

對等式兩邊求導,得,

,則。       …………4分

⑵要比較的大小,即比較:的大小,

時,

時,;

時,;                              …………6分

猜想:當時,,下面用數(shù)學歸納法證明:

由上述過程可知,時結(jié)論成立,

假設當時結(jié)論成立,即

時,

時結(jié)論也成立,

∴當時,成立。                          …………11分

綜上得,當時,

時,;

時, 

 

查看答案和解析>>


同步練習冊答案