答卷前將密封線內(nèi)的項目填寫清楚.題 號二三總 分151617181920分 數(shù) 得 分評卷人 查看更多

 

題目列表(包括答案和解析)

如圖,下面的表格內(nèi)的數(shù)值填寫規(guī)則如下:先將第1行的所有空格填上1;再把一個首項為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);其它空格按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設(shè)第2行的數(shù)依次為b1,b2,…,bn,試用n,q表示b1+b2+…+bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對于任意非零實數(shù)q,c1+c3>2c2;
(3)能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項c1,c2,…,cm(m≥3)成為等比數(shù)列?若能找到,m的值有多少個?若不能找到,說明理由.

查看答案和解析>>

(2008•成都二模)(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒--HGH(人體生長激素),有望在8月的北京奧運會上首次“伏法”.據(jù)悉,國際體育界研究近10年仍不見顯著成效的HGH檢測,日前已取得新的進展,新生產(chǎn)的檢測設(shè)備有希望在北京奧運會上使用.若組委會計劃對參加某項田徑比賽的120名運動員的血樣進行突擊檢查,采用如下化驗
方法:將所有待檢運動員分成若干小組,每組m個人,再把每個人的血樣分成兩份,化驗時將每個小組內(nèi)的m個人的血樣各一份混合在一起進行化驗,若結(jié)果中不含HGH成分,那么該組的m個人只需化驗這一次就算檢驗合格;如果結(jié)果中含有HGH成分,那么需要對該組進行再次檢驗,即需要把這m個人的另一份血樣逐個進行化驗,才能最終確定是否檢驗合格,這時,對這m個人一共需要進行m+1次化驗.假定對所有人來說,化驗結(jié)果中含有HGH成分的概率均為
110
.當m=3時,
(1)求一個小組只需經(jīng)過一次檢驗就合格的概率;
(2)設(shè)一個小組的檢驗次數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

組委會計劃對參加某項田徑比賽的12名運動員的血樣進行突擊檢驗,檢查是否含有興奮劑HGH成分.采用如下檢測方法:將所有待檢運動員分成4個小組,每組3個人,再把每個人的血樣分成兩份,化驗室將每個小組內(nèi)的3個人的血樣各一份混合在一起進行化驗,若結(jié)果中不含HGH成分,那么該組的3個人只需化驗這一次就算合格;如果結(jié)果中含HGH成分,那么需對該組進行再次檢驗,即需要把這3個人的另一份血樣逐個進行化驗,才能最終確定是否檢驗合格,這時,對這3個人一共進行了4次化驗,假定對所有人來說,化驗結(jié)果中含有HGH成分的概率均為
110

(Ⅰ)求一個小組只需經(jīng)過一次檢驗就合格的概率;
(Ⅱ)設(shè)一個小組檢驗次數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望;
(Ⅲ)至少有兩個小組只需經(jīng)過一次檢驗就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

如圖是將二進制數(shù)11111(2)化為十進制數(shù)的一個程序框圖.
(1)將判斷框內(nèi)的條件補充完整;
(2)請用直到型循環(huán)結(jié)構(gòu)改寫流程圖.

查看答案和解析>>

將[0,1]內(nèi)的均勻隨機數(shù)轉(zhuǎn)化為[-2,6]內(nèi)的均勻隨機數(shù),需要實施的變換為(  )

A.aa1*8                               B.aa1*8+2

C.aa1*8-2                             D.aa1*6

 

查看答案和解析>>

一、選擇題:本大題共8個小題,每小題5分,共40分。

題號

1

2

3

4

5

6

7

8

答案

B

A

B

D

C

D

C

D

二、填空題:本大題共6個小題,每小題5分,共30分

9.    10. 60   11.    12.    13. 2    14. -2;1

三、解答題: 本大題共6個小題,共80分。

15. (本小題共13分)

已知函數(shù)

(Ⅰ)求函數(shù)的定義域;

(Ⅱ)求函數(shù)在區(qū)間上的最值。

解:(Ⅰ)由題意                 

所求定義域為  {}                            …………4分

(Ⅱ)

                           …………9分

   知   ,

所以當時,取得最大值為;                   …………11分

時,取得最小值為0 。                   …………13分

16. (本小題共13分)

已知數(shù)列中,,點(1,0)在函數(shù)的圖像上。

(Ⅰ)求數(shù)列 的通項;

(Ⅱ)設(shè),求數(shù)列的前n項和。      

解:(Ⅰ)由已知        又         …………3分

 所以 數(shù)列是公比為的等比數(shù)列      所以        …………6分

     (Ⅱ) 由                                …………9分

      所以                …………13分

17. (本小題共14分)

如圖,在正三棱柱中,,的中點,點上,。

(Ⅰ)求所成角的大;        

(Ⅱ)求二面角的正切值;

(Ⅲ) 證明.

解:(Ⅰ)在正三棱柱中,  

又  是正△ABC邊的中點,

                               …………3分

所成角

又     sin∠=                      …………5分

所以所成角為

(Ⅱ) 由已知得 

   ∠為二面角的平面角,     所以     …………9分

(Ⅲ)證明:  依題意  得   ,,

因為                        …………11分

又由(Ⅰ)中    知,且,

                                      …………14分

18. (本小題共13分)

某校高二年級開設(shè)《幾何證明選講》及《數(shù)學史》兩個模塊的選修科目。每名學生至多選修一個模塊,的學生選修過《幾何證明選講》,的學生選修過《數(shù)學史》,假設(shè)各人的選擇相互之間沒有影響。

(Ⅰ)任選1名學生,求該生沒有選修過任何一個模塊的概率;

(Ⅱ)任選4名學生,求至少有3人選修過《幾何證明選講》的概率。

解:(Ⅰ)設(shè)該生參加過《幾何證明選講》的選修為事件A,

參加過《數(shù)學史》的選修為事件B, 該生沒有選修過任何一個模塊的概率為P,

所以 該生沒有選修過任何一個模塊的概率為                     …………6分

(Ⅱ)至少有3人選修過《幾何證明選講》的概率為

       

  所以至少有3人選修過《幾何證明選講》的概率為               …………13分

19. (本小題共13分)

已知函數(shù)的圖像如圖所示。

(Ⅰ)求的值;

(Ⅱ)若函數(shù)處的切線方程為,求函數(shù)的        

解析式;

(Ⅲ)若=5,方程有三個不同的根,求實數(shù)的取值范圍。

  解: 函數(shù)的導函數(shù)為  

(Ⅰ)由圖可知  函數(shù)的圖像過點(0,3),且

  得                         …………3分

(Ⅱ)依題意 

         解得  

   所以                                 …………8分

(Ⅲ)依題意

          由                                       ①

    若方程有三個不同的根,當且僅當 滿足        ②

  由 ① ②  得   

   所以 當  時 ,方程有三個不同的根。     …………13分

20. (本小題共14分)

       已知分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線,垂足為,線段的垂直平分線交于點M。

(Ⅰ)求動點M的軌跡的方程;

(Ⅱ)過點作直線交曲線于兩個不同的點P和Q,設(shè)=,若∈[2,3],求的取值范圍。

解:(Ⅰ)設(shè)M,則,由中垂線的性質(zhì)知

||=     化簡得的方程為                  …………3分

(另:由知曲線是以x軸為對稱軸,以為焦點,以為準線的拋物線

    所以  ,         則動點M的軌跡的方程為

(Ⅱ)設(shè),由=  知        ①

又由 在曲線上知                   ②

由  ①  ②       解得    所以 有          …………8分

 ===  …………10分

設(shè) ,∈[2,3], 有 在區(qū)間上是增函數(shù),

得       進而有     

所以    的取值范圍是                             …………14分

               

 

 

 

 

 

 

 


同步練習冊答案