(1)求導(dǎo)數(shù)(x), 查看更多

 

題目列表(包括答案和解析)

(1)求f(x)=
lnx+2x
x2
的導(dǎo)數(shù);
(2)求過曲線y=cosx上點P(
π
3
,
1
2
)
且與過這點的切線垂直的直線方程.

查看答案和解析>>

設(shè)f(x)是定義在(0,+∞)上的單調(diào)可導(dǎo)函數(shù).已知對于任意正數(shù)x,都有f[f(x)+
2
x
]=
1
f(x)
,且f(1)=a>0.
(Ⅰ)求f(a+2),并求a的值;
(Ⅱ)令an=
1
f(n)
,n∈N*
,證明:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

(1)求y=x(x2+
1
x
+
1
x3
)
的導(dǎo)數(shù);
(2)求y=(
x
+1)(
1
x
-1)
的導(dǎo)數(shù);
(3)求y=x-sin
x
2
cos
x
2
的導(dǎo)數(shù);
(4)求y=
x2
sinx
的導(dǎo)數(shù);
(5)求y=
3x2-x
x
+5
x
-9
x
的導(dǎo)數(shù)分

查看答案和解析>>

設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f′(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a),設(shè)函數(shù)f(x)=lnx+
b+2x+1
(x>1)
,其中b為實數(shù).
(1)①求證:函數(shù)f(x)具有性質(zhì)P(b);
②求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

查看答案和解析>>

精英家教網(wǎng)設(shè)f(x)=ax3+bx2+cx的極小值為-8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(-2,0),(
23
,0)
,如圖所示,
(1)求f(x)的解析式;
(2)若對x∈[-3,3]都有f(x)≥m2-14m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

A

B

C

D

A

D

C

A

B

D

 

二、填空題

13. 165    14. 3   15. 36π    16. 6ec8aac122bd4f6e

三、解答題

17. 解:(1)6ec8aac122bd4f6e6ec8aac122bd4f6e

=6ec8aac122bd4f6e………………………….2分

=6ec8aac122bd4f6e.………………………………………4分

<samp id="0ca1c"><dl id="0ca1c"></dl></samp>

20090327

(2)要使函數(shù)6ec8aac122bd4f6e為偶函數(shù),只需

   6ec8aac122bd4f6e 即6ec8aac122bd4f6e………….8分

   因為6ec8aac122bd4f6e

   所以6ec8aac122bd4f6e.………………………………………………………10分

18.解:(1)6ec8aac122bd4f6e.………………………….4分

(2)由題意知n的取值為2,3,4,5,6.

6ec8aac122bd4f6e,  6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e.    …10分

所以6ec8aac122bd4f6e等于5時6ec8aac122bd4f6e最大,最大值為     

6ec8aac122bd4f6e.…. …………12分 

19.解:(Ⅰ)過6ec8aac122bd4f6e點作6ec8aac122bd4f6e6ec8aac122bd4f6e,由正三棱柱性質(zhì)知,

6ec8aac122bd4f6e平面6ec8aac122bd4f6e,………2分

連接6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e上的射影.

6ec8aac122bd4f6e   6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,……………4分

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e中點,又6ec8aac122bd4f6e,所以6ec8aac122bd4f6e6ec8aac122bd4f6e的中點即6ec8aac122bd4f6e.………………6分

(2)過6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,連結(jié)6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e為二面角

6ec8aac122bd4f6e6ec8aac122bd4f6e的平面角. ………………9分

6ec8aac122bd4f6e中,由6ec8aac122bd4f6e=6ec8aac122bd4f6e,

6ec8aac122bd4f6e,得

6ec8aac122bd4f6e.

所以二面角6ec8aac122bd4f6e

平面角的正切值為6ec8aac122bd4f6e.…………12分

20.解:(1)由6ec8aac122bd4f6e

    6ec8aac122bd4f6e………………………….2分

6ec8aac122bd4f6e………………………….………………………….3分

所以數(shù)列6ec8aac122bd4f6e是首項為6ec8aac122bd4f6e,公比為2的等比數(shù)列.

所以數(shù)列6ec8aac122bd4f6e的通項公式6ec8aac122bd4f6e.………………………………6分

(2)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e..………………… 8分

所以6ec8aac122bd4f6e=6ec8aac122bd4f6e

          =6ec8aac122bd4f6e…………..………………………………12分

21.解:(1)6ec8aac122bd4f6e.……………………………2分

(2)由6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e或x=6ec8aac122bd4f6e,.……………………………4分

6ec8aac122bd4f6e

6ec8aac122bd4f6e在[-2,2]上最大值6ec8aac122bd4f6e,最小值6ec8aac122bd4f6e..……………………………8分

(3)6ec8aac122bd4f6e, 由題意知

6ec8aac122bd4f6e...……………………12分

22.解:(Ⅰ)設(shè)6ec8aac122bd4f6e,

因為拋物線的焦點6ec8aac122bd4f6e

6ec8aac122bd4f6e.……………………………1分

6ec8aac122bd4f6e,………2分

6ec8aac122bd4f6e,而點A在拋物線上,

6ec8aac122bd4f6e.……………………………………4分

6ec8aac122bd4f6e故所求拋物線的方程為6ec8aac122bd4f6e.6分

(2)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,顯然直線6ec8aac122bd4f6e,6ec8aac122bd4f6e的斜率都存在且都不為0.

設(shè)6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,則6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e.

    由 6ec8aac122bd4f6e6ec8aac122bd4f6e,同理可得6ec8aac122bd4f6e.……………8分

6ec8aac122bd4f6e

=6ec8aac122bd4f6e6ec8aac122bd4f6e.(當且僅當6ec8aac122bd4f6e時取等號)

所以6ec8aac122bd4f6e的最小值是8.……………………………………12分

 


同步練習(xí)冊答案