(2)當(dāng)=60°時(shí)中的結(jié)論是否成立?請(qǐng)寫出你的結(jié)論.并說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.

正方形ABCD中,∠B=∠BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN­—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE.

(下面請(qǐng)你完成余下的證明過(guò)程)

(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=         °時(shí),結(jié)論AM=MN仍然成立.

(直接寫出答案,不需要證明)

 

查看答案和解析>>

如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN­—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過(guò)程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=        °時(shí),結(jié)論AM=MN仍然成立.
(直接寫出答案,不需要證明)

查看答案和解析>>

如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN­—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過(guò)程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=        °時(shí),結(jié)論AM=MN仍然成立.
(直接寫出答案,不需要證明)

查看答案和解析>>

如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.

正方形ABCD中,∠B=∠BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN­—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE.

(下面請(qǐng)你完成余下的證明過(guò)程)

(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=         °時(shí),結(jié)論AM=MN仍然成立.

(直接寫出答案,不需要證明)

 

查看答案和解析>>

如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN­—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過(guò)程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=        °時(shí),結(jié)論AM=MN仍然成立.
(直接寫出答案,不需要證明)

查看答案和解析>>


同步練習(xí)冊(cè)答案