(2) 若.且.證明對(duì)所有的.有 查看更多

 

題目列表(包括答案和解析)

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿(mǎn)足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿(mǎn)足(2)中條件的無(wú)窮數(shù)列{an},使得a2011=2009?若存在,寫(xiě)出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿(mǎn)足條件); 若不存在,說(shuō)明理由.

查看答案和解析>>

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿(mǎn)足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿(mǎn)足(2)中條件的無(wú)窮數(shù)列{an},使得a2011=2009?若存在,寫(xiě)出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿(mǎn)足條件); 若不存在,說(shuō)明理由.

查看答案和解析>>

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿(mǎn)足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿(mǎn)足(2)中條件的無(wú)窮數(shù)列{an},使得a2012=-2011?若存在,寫(xiě)出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿(mǎn)足條件); 若不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)a>0,且a≠1,f(x)=

(1)求值:f(0)+f(1),f(-1)+f(2);

(2)由(1)的結(jié)果歸納概括對(duì)所有實(shí)數(shù)x都成立的一個(gè)等式,并加以證明;

(3)若n∈N+,求和:f[-(n-1)]+f[-(n-2)]+…+f(-1)+f(0)+f(1)+…+f(n).

查看答案和解析>>

定義數(shù)列,且對(duì)任意正整數(shù),有.

(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和

(2)問(wèn)是否存在正整數(shù),使得?若存在,則求出所有的正整數(shù)對(duì)

;若不存在,則加以證明.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案