【題目】如圖,已知在四邊形中,,,相交于點,,

1)求證:∠=;

2)求的值.

【答案】1)見解析;(2.

【解析】

1)先由∠BAC=BDC=90°與∠AEB=DEC,證得ABE∽△DCE;即可證得,又由∠AED=BEC,證得AED∽△BEC,故可得出∠DAC=CBD

2)由(1)知AED∽△BEC,根據(jù)相似三角形面積的比等于相似比的平方,即可求得AEBE的比值,由銳角三角函數(shù)的定義即可得出結(jié)論.

1)∵,

∴∠CAB=BDC=90°.

∵∠AEB=DEC,

AEB∽△DEC.

,即 ,

∵∠AED=BEC

AED∽△BEC.

∴∠DAC=CBD

(2) AED∽△BEC

,

RtΔABE中,=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為的網(wǎng)格中,的頂點均在格點上,點上,且點也在格點上.

(Ⅰ)的值為_____________

(Ⅱ)是以點為圓心,為半徑的一段圓弧.在如圖所示的網(wǎng)格中,將線段繞點逆時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接,,當的值最小時,請用無刻度的直尺畫出點,并簡要說明點的位置是如何找到的(不要求證明)______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是反比例函數(shù)在第一象限內(nèi)的圖像上的兩點,且兩點的橫坐標分別是24,則的面積是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學社團小組想利用所學的知識了解某廣告牌的高度(圖中GH的長),經(jīng)測量知CD=2m,在B處測得點D的仰角為60°,在A處測得點C的仰角為30°,AB=10m,且A、B、H三點在一條直線上,請根據(jù)以上數(shù)據(jù)計算GH的長(=1.73,要求結(jié)果精確得到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點B為旋轉(zhuǎn)中心,將ABC沿逆時針方向旋轉(zhuǎn)90°得到ABC′,請畫出變換后的圖形;

2求點A和點A′之間的距離

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,,點是斜邊的中點,把繞點旋轉(zhuǎn),使得點落在射線上,點落在點,那么的長是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點為D(﹣1,3),與x軸的一個交點在(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:

①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有實數(shù)根,其中正確的結(jié)論為(

A.②③ B.①③ C.①②③ D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC、BD相交于點O,EAB的中點,且DEAB,AC6,則菱形ABCD的面積是( 。

A. 18 B. 18 C. 9 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A與y軸相切于原點O,平行于x軸的直線交A于M、M兩點,若點M的坐標是-4,-2),則點N的坐標為( )

A.(-1,-2B.(1,2C.(-15-2D.(15,-2

查看答案和解析>>

同步練習冊答案