【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的大學(xué)生參與到志愿服務(wù)中,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng),經(jīng)過(guò)初選,兩所學(xué)校各有300名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.
a.甲學(xué)校學(xué)生成績(jī)的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,,,).
b.甲學(xué)校學(xué)生成績(jī)?cè)?/span>這一組是:
80 80 81 81.5 82 83 83 84
85 86 86.5 87 88 88.5 89 89
c.乙學(xué)校學(xué)生成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
83.3 | 84 | 78 | 46% |
根據(jù)以上信息,回答下列問(wèn)題:
(1)甲學(xué)校學(xué)生,乙學(xué)校學(xué)生的綜合素質(zhì)展示成績(jī)同為82分,這兩人在本校學(xué)生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);
(2)根據(jù)上述信息,推斷________學(xué)校綜合素質(zhì)展示的水平更高,理由為:__________________________
(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性).
(3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到________分的學(xué)生才可以入選.
【答案】(1);(2)乙;理由見(jiàn)解析;(3)85.
【解析】
(1)先算出甲校的中位數(shù),發(fā)現(xiàn)A的成績(jī)?cè)谥形粩?shù)前,而讀表得出B的成績(jī)?cè)谥形痪以下,以此判斷排名;
(2)根據(jù)中位數(shù)和優(yōu)秀率來(lái)判斷綜合素質(zhì);
(3)根據(jù)120人入選可算得入選比例,然后用比例乘抽樣人數(shù)得出樣本中入選人數(shù),根據(jù)排名確定入選成績(jī)即可.
(1)甲校共有50名學(xué)生,則中位數(shù)為第25位和第26位的平均成績(jī)
由直方圖和題干數(shù)據(jù)得,第25位和第26位的成績(jī)?yōu)椋?/span>81和81.5
∴中位數(shù)為:
∵A成績(jī)?yōu)?/span>82分,高于中位數(shù),則A排名在甲校為前半部分
∵B成績(jī)?yōu)?/span>82分,低于乙校中位數(shù)84,則B排名在乙校為后半部分
故A的排名更靠前;
(2)乙;
理由:①與甲校相比,乙校的中位數(shù)更高,說(shuō)明乙校綜合展示水平較高的同學(xué)更多;
②與甲校相比,乙校的優(yōu)秀率更高,說(shuō)明乙校綜合展示水平高分的人數(shù)更多;
(3)∵120人入選,∴入選比例為:120÷300=40%
∵抽樣50人,∴按照入選比例,抽樣人數(shù)中,入選人數(shù)為:50×40%=20人
故選取前20名入選
根據(jù)直方圖知,90-100段成績(jī)有12人
故還需選取80-90段的前8名
由題干數(shù)據(jù)得,第8名為85分
故至少需要達(dá)到85分可入選
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)B(6,0),與y軸交于點(diǎn)A,與二次函數(shù)y=ax2的圖象在第一象限內(nèi)交于點(diǎn)C(3,3).
(1)求此一次函數(shù)與二次函數(shù)的表達(dá)式;
(2)若點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠ADO=∠OED,求點(diǎn)D坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,E是BC邊的中點(diǎn),點(diǎn)P在射線AD上,過(guò)P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)若以P,F,E為頂點(diǎn)的三角形也與△ABE相似,試求x的值;
(3)試求當(dāng)x取何值時(shí),以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,連接,以點(diǎn)為圓心,為半徑畫(huà)弧,交于點(diǎn),已知,,則圖中陰影部分的面積為_______.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并用相關(guān)的思想方法解決問(wèn)題.
例:若多項(xiàng)式分解因式的結(jié)果中有因式,求實(shí)數(shù)的值.
解:設(shè)
若,則或
由得
則是方程的解
所以,即,所以.
解決問(wèn)題:(1)若多項(xiàng)式分解因式的結(jié)果中有因式,求實(shí)數(shù)的值;
(2)若多項(xiàng)式分解因式的結(jié)果中有因式和.
①求出、的值;
②直接寫(xiě)出方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)是拋物線的頂點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為,連接.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)點(diǎn)是拋物線上的動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)若點(diǎn)是軸上方拋物線上的動(dòng)點(diǎn),以為邊作正方形,隨著點(diǎn)的運(yùn)動(dòng),正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)或恰好落在軸上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(a≠0)與y軸交與點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線的對(duì)稱軸方程為x=1.
(1)求拋物線的解析式;
(2)點(diǎn)M從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)N從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;
(3)在點(diǎn)M運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郴州市正在創(chuàng)建“全國(guó)文明城市”,某校擬舉辦“創(chuàng)文知識(shí)”搶答賽,欲購(gòu)買A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買A種20件,B種15件,共需380元;如果購(gòu)買A種15件,B種10件,共需280元.
(1)A、B兩種獎(jiǎng)品每件各多少元?
(2)現(xiàn)要購(gòu)買A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)900元,那么A種獎(jiǎng)品最多購(gòu)買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,點(diǎn)P在對(duì)角線BD上(點(diǎn)P不與點(diǎn)B重合),連接AP,過(guò)點(diǎn)P作PE⊥AP交直線BC于點(diǎn)E.
(1)如圖1,當(dāng)AB=BC時(shí),猜想線段PA和PE的數(shù)量關(guān)系: ;
(2)如圖2,當(dāng)AB≠BC時(shí).求證:
(3)若AB=8,BC=10,以AP,PE為邊作矩形APEF,連接BF,當(dāng)PE=時(shí),直接寫(xiě)出線段BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com