【題目】某校八年級全體同學參加了“愛心一日捐捐款活動,該校隨杋抽査了部分同學捐款的情況統(tǒng)計如圖所示:
(1)求出本次抽查的學生人數(shù);
(2)求出捐款10元的學生人數(shù),并將條形圖補充完整;
(3)捐款金額的眾數(shù)是 元,中位數(shù)是 .
(4)請估計全校八年級1000名學生,捐款20元的有多少人?
【答案】(1)50名;(2)16人,圖見解析;(3)10,12.5;(4)140人
【解析】
(1)有題意可知,捐款15元的有14人,占捐款總人數(shù)的28%,由此可得總人數(shù);
(2)將捐款總人數(shù)減去捐款5、15、20、25元的人數(shù)可得捐10元的人數(shù);
(3)從條形統(tǒng)計圖中可知,捐款10元的人數(shù)最多,可知眾數(shù),將50人的捐款總額除以總人數(shù)可得平均數(shù),求出第25.26個數(shù)據(jù)的平均數(shù)可得數(shù)據(jù)的中位數(shù);
(4)由捐款20元的人數(shù)占總數(shù)的百分數(shù),依據(jù)全校八年級1000名學生,即可得到結論.
解:(1)14÷28%=50(人)
∴本次測試共調查了50名學生,
(2)50﹣(9+14+7+4)=16(人)
∴捐款10元的學生人數(shù)為16人,
補全條形統(tǒng)計圖圖形如下:
(3)由條形圖可知,捐款10元人數(shù)最多,故眾數(shù)是10元;
中位數(shù)是=12.5(元),
故答案為:10、12.5;
(4)1000×=140(人)
∴全校八年級1000名學生,捐款20元的有140人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結論:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在長方形紙片ABCD中,AB=4,P是邊BC上一點,BP=3.將紙片沿AP折疊后,點B的對應點記為點O,PO的延長線恰好經過該長方形的頂點D.
(1)試判斷△ADP的形狀,并說明理由;
(2)求AD長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,是邊上的一點,是的中點,過點作的平行線交的延長線于點,且,連接.
與有什么數(shù)量關系,并說明理由;
①當滿足什么條件時,四邊形是矩形?并說明理由.
②當滿足什么條件時,四邊形是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,證明:AB=FA+BD;
(2)點D在AB的延長線或反向延長線上時,(1)中的結論是否成立?若不成立,請畫出圖形并直接寫出正確結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點P在射線OM上移動,兩直角邊分別與OA、OB相交于點C、D,問PC與PD相等嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O外,∠ABC的平分線與⊙O交于點D,∠C=90°.
(1)CD與⊙O有怎樣的位置關系?請說明理由;
(2)若∠CDB=60°,AB=6,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的、兩個頂點在軸上,頂點在軸的負半軸上.已知,,的面積,拋物線經過、、三點.
求此拋物線的函數(shù)表達式;
點是拋物線對稱軸上的一點,在線段上有一動點,以每秒個單位的速度從向運動,(不與點,重合),過點作,交軸于點,設點的運動時間為秒,試把的面積表示成的函數(shù),當為何值時,有最大值,并求出最大值;
設點是拋物線上異于點,的一個動點,過點作軸的平行線交拋物線于另一點.以為直徑畫,則在點的運動過程中,是否存在與軸相切的?若存在,求出此時點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com