【題目】如圖,AB為⊙O的直徑,點C在⊙O外,∠ABC的平分線與⊙O交于點D,∠C=90°.
(1)CD與⊙O有怎樣的位置關系?請說明理由;
(2)若∠CDB=60°,AB=6,求的長.
【答案】(1)相切,理由見解析;(2)π.
【解析】
(1)連接OD,根據(jù)BD是∠ABC的平分線的性質(zhì)有∠CBD=∠ABD,根據(jù)OD=OB,得到∠ODB=∠ABD,等量代換得到∠ODB=∠CBD,根據(jù)平行線的判定得到OD∥CB,根據(jù)平行線的性質(zhì)有∠ODC=∠C=90°,即可證明CD與⊙O相切;
(2)根據(jù)扇形的弧長公式進行計算即可.
(1)相切.理由如下:
連接OD,
∵BD是∠ABC的平分線,
∴∠CBD=∠ABD,
又∵OD=OB,
∴∠ODB=∠ABD,
∴∠ODB=∠CBD,
∴OD∥CB,
∴∠ODC=∠C=90°,
∴CD與⊙O相切;
(2)若∠CDB=60°,可得∠ODB=30°,
∴∠AOD=60°,
又∵AB=6,
∴AO=3,
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(Ⅰ)若設AP=x,則PC= ,QC= ;(用含x的代數(shù)式表示)
(Ⅱ)當∠BQD=30°時,求AP的長;
(Ⅲ)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級全體同學參加了“愛心一日捐捐款活動,該校隨杋抽査了部分同學捐款的情況統(tǒng)計如圖所示:
(1)求出本次抽查的學生人數(shù);
(2)求出捐款10元的學生人數(shù),并將條形圖補充完整;
(3)捐款金額的眾數(shù)是 元,中位數(shù)是 .
(4)請估計全校八年級1000名學生,捐款20元的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,先描出點,點.
(1)描出點關于軸的對稱點的位置,寫出的坐標 ;
(2)用尺規(guī)在軸上找一點,使的值最。ūA糇鲌D痕跡);
(3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線, DE⊥AB于點E.
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MG交DE延長線于點G.請你在圖2中畫出完整圖形,并直接寫出MD,DG與AD之間的數(shù)量關系;
(3)如圖3,點N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NG交DE延長線于點G,且MB=MG.試探究ND,DG與AD數(shù)量之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,和都是等邊三角形,點、、在同一條直線上,、分別與、交于點、,和交于點,有如下結論:①是等邊三角形;②;③≌;④;⑤平分;⑥;⑦.其中不正確的結論的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,對稱軸為直線,則下列結論正確的是( )
A. B. 方程的兩個根是,
C. D. 當時,隨的增大而增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com